首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
现代分析技术在水质氨氮监测中的应用   总被引:3,自引:0,他引:3  
氨氮是我国水质污染物总量控制指标之一,水体中氨氮排放总量的控制对于水环境的改善具有重大的作用。针对氨氮污染的治理需要有更为准确、有效、快速的分析方法相配合。就近年来水中氨氮的测定方法进行了综述,介绍了实验室方法与在线监测方法的最新进展,比较了各自的特点及其在水环境监测中的应用。相应学科的新成果融入现代分析技术使得氨氮的分析水平有了极大的提高,这将会在今后的水环境污染治理中发挥越来越大的作用。  相似文献   

2.
用离子色谱法测定丙烯中痕量碱性氮化物   总被引:2,自引:0,他引:2  
刘汉勋  樊立民 《分析化学》1995,23(2):148-153
采用化学反应浓缩技术,将丙烯中痕量碱性氮化物转变为水溶性的阳离子,用离子色谱法进行测定。该法准确度高,操作简便,可测定丙烯中10^9g/L的碱性氮化物,也可用于炼油厂及其它环境气氛中碱性氮化物的测定。  相似文献   

3.
《Analytical letters》2012,45(10):951-960
Abstract

An analytical system for measuring total nitrogen and its isotopic abundance in a variety of environmental samples has been developed. A reductive pyrolysis system and a directional focusing 6-inch gas mass spectrometer were combined into the analytical system. In the reductive part of the system, nitrogen species are converted to ammonia with an atmosphere of hydrogen in the presence of a heated nickel catalyst. Five percent of the gas stream is split away for measuring total nitrogen by a conductivity detector. The ammonia is removed from the gas stream employing a cold finger reaction vessel.

The hydrogen-free ammonia is decomposed thermally to nitrogen and hydrogen at 1000°C, employing a hot rhenium filament. The N2 produced from the decomposition is used for measuring the abundance of masses 28 and 29 by mass spectrometry. From this ratio, the 15N atom fraction is calculated.

Standard samples of N2, ammonia, orchard leaves and urea have been successfully analyzed to determine isotopic compositions. Samples containing as little as 20 μg of total nitrogen can be analyzed by this system. By the addition of multi-reaction vessels, three samples may be completed per hour.  相似文献   

4.
Advances in instrumentation and technology now provide the ability to perform many quantitative determinations in the field. Additionally, the potential for sample degradation and analyte decomposition make it necessary to determine certain analytes (e.g., dissolved oxygen) in the field when conducting environmental analyses. Unfortunately, field environmental—analytical chemistry is not a substantial portion of the analytical chemistry curriculum at many institutions. Students in lower-level analytical chemistry courses are often non-chemistry science majors, particularly at institutions with small chemistry departments. We report here on an experiment in which field environmental-analytical chemistry is introduced in the quantitative analysis laboratory. In the context of a water quality assessment of a local river, students determine temperature, pH, ORP, nitrate nitrogen, and ammonia nitrogen at several points in the river. The experimental objective is to determine the potential effects local agricultural practices and treated wastewater discharge may be having on the water composition. The pedagogical objective is to expose these students to the difficulties involved in making analytical determinations in unfamiliar and/or disruptive settings.  相似文献   

5.
用惰性气体保护,卧式电阻炉高温灼烧处理增碳剂样品,在水蒸气环境下,将增碳剂中的氮还原成氨,在碱性过硫酸钾存在下,用紫外分光光度法测定其中氮含量,可得到较高的准确度和精密度,相对标准偏差小于6%,方法简单、快速、成本低,能满足炼钢生产对增碳剂中氮的检测要求。  相似文献   

6.
Simple visual and spectrophotometric methods for the determination of ammonia nitrogen in water are proposed, based on the color development of indothymol blue formed between ammonia and thymol. The color development was accelerated by nitroprusside to complete in 3 min. This color development is remarkably rapid compared with that of the other conventional methods with indothymol blue and indophenol blue. The concentration range of ammonia nitrogen spectrophotometrically determined was 0.04–1.2 mg/L NH4-N. The absorbance per 1 μg NH4-N was 0.0215 (molar absorptivity = 1.51 × 104) at 690 nm. The visual method not using any instrument as an in situ method in field works was developed based on the optimum conditions for the established spectrophotometric method. This visual method was successfully applied to the determination of ammonia nitrogen in environmental waters.  相似文献   

7.
J H Cross  T F Limero  J L Lane  F Wang 《Talanta》1997,45(1):19-23
A simple procedure to analyze ammonia in ethylene by ion mobility spectrometry is described. The spectrometer is operated with a silane polymer membrane., 63Ni ion source, H+ (H2O)n reactant ion, and nitrogen drift and source gas. Ethylene containing parts per billion (ppb) (v/v) concentrations of ammonia is pulled across the membrane and diffuses into the spectrometer. Preconcentration or preseparation is unnecessary, because the ethylene in the spectrometer has no noticeable effect on the analytical results. Ethylene does not polymerize in the radioactive source. Ethylene's flammability is negated by the nitrogen inside the spectrometer. Response to ammonia concentrations between 200 ppb and 1.5 ppm is near linear, and a detection limit of 25 ppb is calculated.  相似文献   

8.
Simple visual and spectrophotometric methods for the determination of ammonia nitrogen in water are proposed, based on the color development of indothymol blue formed between ammonia and thymol. The color development was accelerated by nitroprusside to complete in 3 min. This color development is remarkably rapid compared with that of the other conventional methods with indothymol blue and indophenol blue. The concentration range of ammonia nitrogen spectrophotometrically determined was 0.04–1.2 mg/L NH4-N. The absorbance per 1 μg NH4-N was 0.0215 (molar absorptivity = 1.51 × 104) at 690 nm. The visual method not using any instrument as an in situ method in field works was developed based on the optimum conditions for the established spectrophotometric method. This visual method was successfully applied to the determination of ammonia nitrogen in environmental waters. Received: 21 December 1998 / Revised: 31 May 1999 / /Accepted: 4 June 1999  相似文献   

9.
Over 97% of the Earth's water is high salinity water in the form of gulfs, oceans, and salt lakes. There is an increasing concern for the quality of water in bays, gulfs, oceans, and other natural waters. These waters are affected by many different sources of contamination. The sources are, but not limited to, groundwater run-off of nitrogen containing fertilizer, pesticides, cleaning agents, solid wastes, industrial waters, and many more. The final destinations of these contaminants are rivers, lakes, and bayous that eventually will lead to bays, gulfs, and oceans. Many industries depend on the quality of these waters, such as the fishing industry. In addition to wild marine life, there are large aquariums and fish and shrimp farms that are required to know the quality of the water. However, the ability of these industries to monitor their processes is limited. Most analytical methods do not apply to the analysis of high salinity waters. They are dependent on wet chemistry techniques, spectrophotometers, and flow analyzers. These methods do not have the accuracy, precision, and sensitivity when compared to ion chromatography (IC). Since the inception of IC, it has become a standard practice for determining the content of many different water samples. Many IC methods are limited in the range of analytes that can be detected, as well as the numerous sample sources of which the methods are applicable. The main focus of current IC methods does not include high salinity waters. This research demonstrates an ion chromatographic method that has the ability to determine low level concentrations of inorganic nitrogen and related anions (nitrite-N, nitrate-N, phosphorous-P, sulfate, bromide, chloride, sulfide, fluoride, ammonia, calcium, and magnesium) in a single run using a combination of UV and conductivity detectors. This method is applicable to various waters, and uses both freshwater and high salinity water samples.  相似文献   

10.
Grand canonical Monte Carlo simulation is used to study the adsorption of nitrogen at 77 K and ammonia at 240 K to represent weakly polar and polar molecules, respectively, on infinite and finite graphite surfaces. These graphite surfaces were modeled with different percentages of carbons removed (defects) from the top graphite layer. Increasing the number of defects increases the adsorption and the isosteric heat of nitrogen at low pressure. At moderate pressures the amount adsorbed is less due to the disruption in the packing of the nitrogen in the first layer. In contrast, the adsorption of ammonia at all pressures is reduced as the percentage of defects is increased. This is due to the disruption in ammonia bonding caused by the defects. The condensation-like step change in the ammonia isotherm on the perfect graphite surface is not observed for any of these surfaces with defects even for the case of only 10% defects. At high percentage of defects the adsorption isotherm is close to Henry law behavior for much of the pressure range. The adsorption on finite surfaces shows that the amount adsorbed for both molecules decreases compared with that of the infinite surfaces, resulting from interaction potentials with the surface and other fluid molecules at the edge. The decrease is much greater for the ammonia adsorption because the bonding between ammonia molecules is disrupted, meaning that the adsorption cannot follow the mechanism of condensation seen for the infinite surface.  相似文献   

11.
Ucon-75-H-90,000 and Ucon-LB-300X are the new substrates used on the piezoelectric crystal detectors. On exposure to nitrogen dioxide these substrates form new compounds on the crystal which are sensitive to nitrogen dioxide and ammonia. With these coatings it is possible to detect nitrogen dioxide and ammonia in the parts per billion range. Some problems are caused by atmospheric moisture and high concentrations of organic pollutants.  相似文献   

12.
Methods are described for the determination of nitrogen trichloride over the range of concentrations at which it exists in chlorine manufacture and handling. The methods are based on the conversion of nitrogen trichloride to ammonium chloride by hydrochloric acid and the determination of ammonium by spectrophotometry as the indophenol complex or by potentiometry with an ammonia gas-sensing electrode; higher levels of nitrogen trichloride are determined by titration. For liquid chlorine, a sample is taken in a refrigerated trap containing hydrochloric acid. After that, the chlorine is slowly evaporated at atmospheric pressure. Results of tests are given to prove the reliability of the methods.  相似文献   

13.
《Analytical letters》2012,45(11):1325-1333
Abstract

A new concept for the analytical application of persulfate oxidation in alkaline media is presented: The persulfate oxidation of organic compounds has been utilized to determine their nitrogen content. The ammonia formed in the oxidation coupled distillation was measured acidimetrically with an accuracy of ± 0.5 % (rel.). The applicability of the method proposed is shown in the determination of the organically bound nitrogen content of numerous model substances as well as industrial and natural matrices: vinasse, aluminate liquor, white- and soy-bean samples, eggprotein.  相似文献   

14.
Ammonium (NH4+) and ammonia (NH3) in aquatic ecosystems are of great interest to environmental scientists because they can be used to study the nitrogen cycle and as water quality indicators. Analytical separation methods developed in recent decades have been used widely to determine NH4+ and NH3 in aqueous solutions. This review presents an overview of state-of-the-art separation methods and analytical techniques for determining NH3/NH4+ in natural water, including chromatographic methods, electrophoretic methods, extraction methods, membrane-based gas diffusion methods, membraneless gas diffusion methods, passive sampling methods, and paper-based analytical methods. Common detection techniques that can be used in conjunction with particular separation methods are described, phase-transfer strategies (liquid-liquid, liquid-solid, liquid-membrane-liquid, and liquid-gas-liquid methods) are highlighted, and the strengths and weaknesses of the separation methods are discussed. The outlook, challenges, and expected future developments in the field of separation methods for determining NH4+ and NH3 in natural water are presented.  相似文献   

15.
Flow injection analysis instrumentation and methodology for the determination of ammonia and ammonium ions in an aqueous solution are described. Using in-line solid phase basification beds containing crystalline media. the speciation of ammoniacal nitrogen is shifted toward the un-ionized form. which diffuses in the gas phase across a hydrophobic microporous hollow fiber membrane into a pure-water-containing analytical stream. The two streams flow in a countercurrent configuration on opposite sides of the membrane. The neutral pH of the analytical stream promotes the formation of ammonium cations, which are detected using specific conductance. The methodology provides a lower limit of detection of 10 microgram/L and a dynamic concentration range spanning three orders of magnitude using a 315-microliters sample injection volume. Using immobilized urease to enzymatically promote the hydrolysis of urea to produce ammonia and carbon dioxide, the technique has been extended to the determination of urea.  相似文献   

16.
Limited availability of platinum is a potential threat to fuel cell commercialization. Since the 1970s, alternative catalysts to the electrochemical reduction of oxygen have been obtained from heat treatment at T > 600 degrees C of carbon with a non-noble metal and a source of nitrogen atoms. However, the process by which the heat treatment activates these materials remains an open question. Here, we report that the activation process of carbon black and iron acetate heat-treated in NH(3) comprises three consecutive steps: (i) incorporation of nitrogen atoms in the carbon, (ii) micropore formation through reaction between carbon and ammonia, and (iii) completion of active sites in the micropores by reaction of iron with ammonia. Step (ii) is the slowest. Moreover, the microporous surface per mass of catalyst controls the macroscopic activity when enough nitrogen atoms are incorporated in the structure of the carbon support. These facts should help in determining the structure of the active sites and in identifying methods to increase the site density of such catalysts.  相似文献   

17.
18.
Nitrogen recovery from wastewater represents a sustainable route to recycle reactive nitrogen (Nr). It can reduce the demand of producing Nr from the energy-extensive Haber-Bosch process and lower the risk of causing eutrophication simultaneously. In this aspect, source-separated fresh urine is an ideal source for nitrogen recovery given its ubiquity and high nitrogen contents. However, current techniques for nitrogen recovery from fresh urine require high energy input and are of low efficiencies because the recovery target, urea, is a challenge to separate. In this work, we developed a novel fresh urine nitrogen recovery treatment process based on modular functionalized metal–organic frameworks (MOFs). Specifically, we employed three distinct modification methods to MOF-808 and developed robust functional materials for urea hydrolysis, ammonium adsorption, and ammonia monitoring. By integrating these functional materials into our newly developed nitrogen recovery treatment process, we achieved an average of 75 % total nitrogen reduction and 45 % nitrogen recovery with a 30-minute treatment of synthetic fresh urine. The nitrogen recovery process developed in this work can serve as a sustainable and efficient nutrient management that is suitable for decentralized wastewater treatment. This work also provides a new perspective of implementing versatile advanced materials for water and wastewater treatment.  相似文献   

19.
The accuracy of the measurement of small amounts of nitrogen in steel by chemical methods is dependent on satisfactory procedures for converting the nitrides into ammonia, and for measuring the ammonia thus formed.In the method proposed for the latter, Nessler's reagent is used and the intensity of colour is measured on an absorptiometer. For maximum accuracy, variables such as temperature and time of standing before measurement, must be carefully controlled.  相似文献   

20.
Flow injection analysis instrumentation and methodology for the determination of ammonia and ammonium ions in an aqueous solution are described. Using in-line solid phase basification beds containing crystalline media, the speciation of ammoniacal nitrogen is shifted toward the un-ionized form, which diffuses in the gas phase across a hydrophobic microporous hollow fiber membrane into a pure-water-containing analytical stream. The two streams flow in a countercurrent configuration on opposite sides of the membrane. The neutral pH of the analytical stream promotes the formation of ammonium cations, which are detected using specific conductance. The methodology provides a lower limit of detection of 10 μg/L and a dynamic concentration range spanning three orders of magnitude using a 315-μL sample injection volume. Using immobilized urease to enzymatically promote the hydrolysis of urea to produce ammonia and carbon dioxide, the technique has been extended to the determination of urea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号