首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
In the present investigation, PtRuTiOx/C electrocatalyst was prepared by a modified polyol synthesis method and the as-prepared electrocatalyst was treated under the reductive atmosphere (30 vol% H2 in Ar) at 500 °C for 2 h (denoted as PtRuTiOx/C-500) to enhance the interaction between the metal particles and the support. For comparison, the commercial PtRu/C electrocatalyst was also treated by the same procedure as PtRuTiOx/C (denoted as PtRu/C-500). Transmission electron microscopy results indicated that PtRuTiOx/C electrocatalyst exhibited not only a uniform dispersion and narrow size distribution with a smaller particle size, but also excellent stability during the thermal treatment. In contrast, the commercial PtRu/C electrocatalyst is not stable during the thermal treatment and the metal particles greatly agglomerated. The results of CO-stripping voltammetry, single direct methanol fuel cell tests and life-time test jointly showed that PtRuTiOx/C-500 had better durability than commercial PtRu/C while keeping a desirable activity toward methanol electro-oxidation, which may be attributed to the addition of titanium oxide that improved the interaction between noble metal particles and the support.  相似文献   

2.
Mixed oxide samples of nanostructured CuxCe1−xO2−yof various composition were generated by (i) chemical precipitation and ball milling and (ii) inert gas condensation. X-ray diffraction measurements suggested that copper oxide was dissolved in nanostructured cerium oxide up to concentrations ofx=0.15. Solid electrolyte cells of the typeA, Cu2O/CuBr/CuxCe1−xO2−y(A=Cu or CuO) showed reversible cell voltages. The ratio of the formal chemical activities of CuO and Cu2O dissolved in nanostructured cerium oxide were calculated from the cell voltages. The results are discussed in terms of an apparent macroscopic solubility, due to interfacial segregation of copper oxide on nanostructured cerium oxide.  相似文献   

3.
The Cu18.5Ce x Al81.5 ? x (where x = 2, 7.4, and 14) oxide catalysts were synthesized by coprecipitation and tested in the methanol steam reforming reaction in an integral flow reactor at 270°C. It was found that the activity of the catalysts increased with the calcination temperature and catalysts with intermediate cerium contents exhibited the highest activity; these catalysts exhibited the greatest values of S BET and S Cu. The phase analysis demonstrated that copper in these samples occurred almost entirely as a CuO-CeO2 solid solution. The concentration of carbon monoxide at the reactor outlet decreased with the calcination temperature. For the most active sample with a cerium content of 7.4% calcinated at 700°C, the concentration of CO reached a minimum of no higher than 0.3%.  相似文献   

4.
Electronic metal-support interactions (EMSIs) of oxide-supported metal catalysts strongly modifies the electronic structures of the supported metal nanoparticles. The strong influence of EMSIs on the electronic structures of oxide overlayers on metal nanoparticles employing cerium oxides/Ag inverse catalysts is reported herein. Ce2O3 overlayers were observed to exclusively form on Ag nanocrystals at low cerium loadings and be resistant to oxidation treatments up to 250 °C, whereas CeO2 overlayers gradually developed as the cerium loading increased. Ag cubes enclosed by {001} facets with a smaller work function exert a stronger EMSI effect on the CeOx overlayers than Ag cubes enclosed by {111} facets. Only the CeO2 overlayers with a fully developed bulk CeO2 electronic structure significantly promote the catalytic activity of Ag nanocrystals in CO oxidation, whereas cerium oxide overlayers with other electronic structures do not. These results successfully extend the concept of EMSIs from oxide-supported metal catalysts to metal-supported oxide catalysts.  相似文献   

5.
The possibility of using the LnO x mischmetal (Ln = Ce, La, Nd, Pr, Sm) for preparation of cathodes for solid-oxide fuel cells with the supported YSZ electrolyte is studied. The electrical and electrochemical characteristics of Ln-Mn-O electrodes with the ratio of all lanthanides contained in the mischmetal except for cerium to manganese Ln: Mn = 1: 1 and also of a material comprised of Ln-Mn-O and La0.8Sr0.2MnO3 are studied. The latter electrode material that contains 35?C40 wt % of Ln-Mn-O and was sintered at 1200°C has the specific ohmic resistance of 0.1 ?? cm at 800°C. The polarization conductivity is compared for electrodes made of 100% Ln-Mn-O, 40 wt % Ln-Mn-O + 60 wt % La0.8Sr0.2MnO3, and 100% La0.8Sr0.2MnO3 in the initial state and after their modification through the introduction of an electrocatalyst (PrO2 ? x ). The highest polarization conductivity is typical of Ln-Mn-O + (La, Sr)MnO3 electrodes containing 40 wt % Ln-Mn-O and PrO2 ? x . The polarization conductivity of these electrodes is found to be 25 S/cm2 at 800°C.  相似文献   

6.
In regard to earth‐abundant cobalt water oxidation catalysts, very recent findings show the reorganization of the materials to amorphous active phases under catalytic conditions. To further understand this concept, a unique cobalt‐substituted crystalline zinc oxide (Co:ZnO) precatalyst has been synthesized by low‐temperature solvolysis of molecular heterobimetallic Co4?xZnxO4 (x=1–3) precursors in benzylamine. Its electrophoretic deposition onto fluorinated tin oxide electrodes leads after oxidative conditioning to an amorphous self‐supported water‐oxidation electrocatalyst, which was observed by HR‐TEM on FIB lamellas of the EPD layers. The Co‐rich hydroxide‐oxidic electrocatalyst performs at very low overpotentials (512 mV at pH 7; 330 mV at pH 12), while chronoamperometry shows a stable catalytic current over several hours.  相似文献   

7.
The properties of the Pt-CeO x system prepared by the oxidation of the Pt2Ce intermetallic compound were studied. The sample was characterized by X-ray diffraction in situ, thermogravimetry, scanning electron microscopy (with an accessory for energy dispersion analysis), transmission electron microscopy, and temperature-programmed reduction with hydrogen. The catalytic properties of the sample were studied in the model reaction of toluene hydrogenation. The oxidation of the intermetallic compound caused the appearance of metallic platinum and cerium oxide phases and high-dispersity platinum particles encapsulated in cerium oxide. Metallic platinum on the surface of the catalyst experienced rapid deactivation in the presence of hydrogen sulfide; high-dispersity platinum particles encapsulated in cerium oxide exhibited enhanced stability toward sulfur compounds.  相似文献   

8.
The formation of rare earth oxyfluorides and their properties as an electrocatalyst and/or a solid electrolyte using for fuel cell were studied by means of x-ray and electrochemical methods.By a high temperature solid reaction between rare earth fluorides and rare earth or zirconium oxides not only the simple oxyfluoride such as NdOF, SmOF, CeOF and YOF but also the binary one written by Nd1?xLnxOF, (NdOF)1?x(MO)x and (ZrO2)1?x(LnF3)x were obtained, where Ln; Y, La, Nd, Sm and Yb, MO; alkaline earth oxide and Nb2O5. On the solid reaction process, it was found that the exchange reaction of anion, that is F? and O2?, took place at first between the rare earth fluoride and the oxide. LnF3 could form the solid solution with ZrO2 at above 1200°C taking the fluorite structure in the composition range of below 30 mol%-LnF3, so-called the stabilized zirconia.The crystal type of these oxyfluorides was any one of the rhombohedral, the cubic and the tetragonal. The cubic phase oxyfluorides contained Nd showed high electrocatalytic activity for both the hydrogen oxidation and the oxygen reduction. Then (NdOF.)0.9(Nb2O5)0.1 and (ZrO2)1?x(LnF3)x were found to act as the oxide ion conducting solid electrolyte.  相似文献   

9.
High purity cerium oxide and yttrium oxide were used to form ceria-based solid solution (Ce1−xYxO2−δ, 0.05x0.4) via a conventional mixed-oxide method. All the samples used were aged at 1000 °C in air for 8 days. Crystal structure and microstructure were characterized by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). The ionic conductivity (i.e., grain interior (GI) grain boundary (GB) and total conductivities) in this system were systematically studied as a function of dopant content over the temperature range of 250–850 °C in air using an impedance spectroscopy. The lattice parameter decreased with increasing the Y content, but it did not obey Vegard's law. The Y doping had no significant effect on densification behavior and final sintered density, but leading to a significant decrease in grain size as compared to the undoped ceria. The composition x0.1 had a maximum GI conductivity, while a maximum total conductivity was observed at x0.15. A significant high-temperature aging effect was also found for the samples with higher Y doping levels. 10% and 15% decreases in the GI and GB conductivities, respectively, were detected in the aged Ce0.7Y0.3O2−δ ceramic.  相似文献   

10.
A new electrocatalyst, Pt/HxMoO3-C, for methanol oxidation, was prepared by dispersing platinum nano-particles on Vulcan XC-72 modified by hydrogen molybdenum bronze (HxMoO3, 0 ≤ x ≤ 2). The modification of Vulcan XC-72 with HxMoO3 on was accomplished by reducing the adsorbed molybdic acid and the platinum nano-particles were dispersed on the modified carbon by reducing chloroplatinic acid, with formaldehyde as the reductant. The prepared Pt/HxMoO3-C was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersion spectrometer, cyclic voltammetry (CV), chronoamperometry (CA), and single-cell test, with a comparison of the electrocatalyst, carbon-supported platinum (Pt/C) prepared under the same condition but without the modification. The results obtained from XRD and SEM showed that the modification of Vulcan XC-72 with HxMoO3 reduced the platinum particle size and improved distribution uniformity of platinum on carbon. The results, obtained from CV, CA, and the single-cell test, showed that Pt/HxMoO3-C exhibited better electrocatalytic activity toward methanol oxidation than Pt/C.  相似文献   

11.
The phase-pure cerium stannate pyrochlore (Ce2Sn2O7) has been prepared for the first time. The structure and oxidation states of both cations were carefully reviewed, and the compound was unambiguously replaced within the rare-earth stannate series. As a consequence of the low stability of trivalent cerium in oxide phases, one oxygen per formula unit could be intercalated by calcination under O2 at 400 °C, leading to the new Ce2Sn2O8 pyrochlore. This latter phase is subject to oxygen under-stoichiometry from 400 to 700 °C. However, oxygen deintercalation seems to be in competition with cerium oxide segregation at high temperature, leading to the formation of cerium deficient pyrochlore phases.  相似文献   

12.
The cerium density and valence in micrometer‐size platinum‐supported cerium–zirconium oxide Pt/Ce2Zr2Ox (x=7–8) three‐way catalyst particles were successfully mapped by hard X‐ray spectro‐ptychography (ptychographic‐X‐ray absorption fine structure, XAFS). The analysis of correlation between the Ce density and valence in ptychographic‐XAFS images suggested the existence of several oxidation behaviors in the oxygen storage process in the Ce2Zr2Ox particles. Ptychographic‐XAFS will open up the nanoscale chemical imaging and structural analysis of heterogeneous catalysts.  相似文献   

13.
The electrochemical characteristics of composite cathodes made of (La, Sr) MnO3-(Zr, Sc)O2 (LSM-SSZ), modified with PrO2 − x additive, and designed for application in solid oxide fuel cells at moderately high temperatures were studied. The relationship between activity of catalytically modified composite LSM-SSZ cathodes and dispersity of electrocatalyst was revealed. The boundaries of the temperature range with the maximum dispersity of electrocatalyst and electrochemical activity of cathodes were found. The composite LSM-SSZ cathodes modified with PrO2 − x were shown inert with respect to oxidation reactions of hydrocarbon fuel (methane) and highly active electrochemically with respect to oxygen reaction in non-equilibrium gas mixture of CH4 and O2. In cells with (Ce, Sm)O2 (SDC) and (Zr, Y)O2 (YSZ) electrolytes, their overvoltage is below 80 mV at the current density about 0.5 A/cm2 and temperature of 600°C. These electrodes can be used as cathodes in single-chamber fuel cells. Long-term experiments were carried out to study time stability of characteristics of the said composite cathodes. The studied electrodes show parabolic or damped exponential time curves of polarization resistance if contacting with YSZ or SDC electrolyte, respectively. According to the forecast based on the experimental regularities, the polarization resistance of LSM-SSZ cathodes in 10,000 h will not exceed 0.4 or 0.13 Ohm cm2, respectively, if YSZ or SDC electrolyte is used.  相似文献   

14.
采用等体积浸渍法制备多壁碳纳米管(MWCNTs)负载Ce-Mn的催化剂,考察了Ce掺杂对Mn/MWCNTs催化剂上NH3选择性催化还原(SCR)NOx反应活性的影响.并运用透射电镜扫描、N2吸附-脱附、程序升温还原、X射线光电子能谱、X射线衍射等手段,重点考察了Ce掺杂对Mn/MWCNTs催化剂结构性质的影响.结果表明,Ce掺杂能显著提高催化剂的SCR活性,其活性增量随着Ce含量的增加先增大后减小;当Ce/Mn为0.6时,催化剂活性最佳.表征结果显示,Mn/MWCNTs中添加Ce后,金属氧化物在MWCNTs上的分散程度提高;催化剂的比表面积和孔体积增大,平均孔径减小;氧化能力提高;表面氧含量增加,Mn化合价升高;结晶度降低,Mn主要以无定形或微晶形式存在,Ce主要以CeO2物相存在.  相似文献   

15.
A water based cerium oxide precursor solution using nitrilo-tri-acetic-acid (NTA) and acetic acid as complexing agents is described in detail. This precursor solution is used for the deposition of epitaxial CeO2 layers on Ni-5at%W substrates by dip-coating. The influence of the complexation behavior on the formation of transparent, homogeneous solutions and gels has been studied. It is found that ethylenediamine plays an important role in the gelification. The growth conditions for cerium oxide films were Ar-5% gas processing atmosphere, a solution concentration level of 0.25 M, a dwell time of 60 min at 900 °C and 5-30 min at 1050 °C. X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscopy (AFM), pole figures and spectroscopic ellipsometry were used to characterize the CeO2 films with different thicknesses. Attenuated total reflection-Fourier transform infrared (ATR-FTIR) was used to determine the carbon residue level in the surface of the cerium oxide film, which was found to be lower than 0.01%. Textured films with a thickness of 50 nm were obtained.  相似文献   

16.
Glasses in the system 5In2O3·94Na2B4O7 were fabricated via melt quenching technique. The amorphous nature of the quenched glasses was confirmed by X‐ray powder diffraction studies, and the infrared spectra of the glasses show no boroxol ring formation in the structure of these glasses. Differential thermal analysis is shown glass transition temperature 696°C and crystallization temperature 1151°C. A cerium‐zirconium mixed oxide Ce0.75Zr0.25O2 and Ho‐doped cerium‐zirconium mixed oxide were obtained by solid‐state method. Then glass powder and Ho‐doped cerium‐zirconium mixed oxide were mixed. The mixture was heated in a crucible. The glass‐ceramic sample was obtained by pouring the melts on stainless steel. Obtained samples were annealed at 450°C for 1 h to remove thermal strain. Differential thermal analysis for glass‐ceramic sample is shown glass transition temperature 668°C and crystallization temperature 1159°C. The scanning electron microscopy study for glass‐ceramic indicates that the crystallized glass consists of rod‐like crystals with average diameter of about 38 nm dispersed in the glassy regions.  相似文献   

17.
Ken-ichi Itoh 《Tetrahedron》2004,60(7):1671-1681
The reactions of alkenes and alkynes with ammonium cerium(IV) nitrate ((NH4)2Ce(NO3)6, CAN(IV)) in acetone under reflux gave the corresponding 3-acetyl-4,5-dihydroisoxazole and 3-acetylisoxazole derivatives. In the case of acetophenone, 3-benzoyl-4,5-dihydroisoxazole and 3-benzoylisoxazole derivatives were obtained. Reaction of acetone with CAN(IV) afforded the corresponding furoxan (3,4-diacetyl-1,2,5-oxadiazole 2-oxide) as the dimer of nitrile oxide. Moreover, it was found that yields of isoxazole derivatives were improved using ammonium cerium(III) nitrate tetrahydrate ((NH4)2Ce(NO3)5·4H2O, CAN(III))-formic acid. The reaction mechanisms based on nitration and formation of nitrile oxide mediated by CAN(IV) or CAN(III) from acetone or acetophenone are also proposed.  相似文献   

18.
Endowing transition‐metal oxide electrocatalysts with high water oxidation activity is greatly desired for production of clean and sustainable chemical fuels. Here, we present an atomically thin cobalt oxyhydroxide (γ‐CoOOH) nanosheet as an efficient electrocatalyst for water oxidation. The 1.4 nm thick γ‐CoOOH nanosheet electrocatalyst can effectively oxidize water with extraordinarily large mass activities of 66.6 A g?1, 20 times higher than that of γ‐CoOOH bulk and 2.4 times higher than that of the benchmarking IrO2 electrocatalyst. Experimental characterizations and first‐principles calculations provide solid evidence to the half‐metallic nature of the as‐prepared nanosheets with local structure distortion of the surface CoO6?x octahedron. This greatly enhances the electrophilicity of H2O and facilitates the interfacial electron transfer between Co ions and adsorbed ‐OOH species to form O2, resulting in the high electrocatalytic activity of layered CoOOH for water oxidation.  相似文献   

19.
Reduction of cyclohexanone to cyclohexanol using propane-2-ol as hydrogen donor has been carried out in vapor phase on CexZr1-xO2 solid solutions synthesized by ombustion synthesized at 302°C. The solid solutions around 0.4 mol% cerium content show better catalytic activity compared to pure ZrO2 and the selectivity to cyclohexanol is 98%. A moderate acid-base and good redox properties of CexZr1-xO2 solid solutions are seen to be responsible for the catalytic activity. A possible mechanism of hydride transfer has been proposed with cerium ions as promoters. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
Catalysts containing cerium oxide as a support and platinum and palladium as active components for the low-temperature oxidation of carbon monoxide were studied. The catalysts were synthesized in accordance with original procedures with the use of palladium and platinum complex salts. Regardless of preparation procedure, the samples prepared with the use of only platinum precursors did not exhibit activity at a low temperature because only metal and oxide (PtO, PtO2) nanoparticles were formed on the surface of CeO2. Unlike platinum, palladium can be dispersed on the surface of CeO2 to a maximum extent up to an almost an ionic (atomic) state, and it forms mixed surface phases with cerium oxide. In a mixed palladium-platinum catalyst, the ability of platinum to undergo dispersion under the action of palladium also increased; as a result, a combined surface phase with the formula Pd x Pt y CeO2 ? δ, which exhibits catalytic activity at low temperatures, was formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号