首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
An extremely thin cell (ETC) with the thickness of a Rb atomic vapor layer in the range of 100–300 nm was fabricated. It is demonstrated that a simple laser-diode technique with a single resonant light beam is sufficient to observe separately all of the atomic hyperfine transitions of the D 2 line of Rb (780 nm) and also allows us to measure the relative transition probabilities of the hyperfine transitions. The onset of collisional self-broadening of the hyperfine transitions as the number density of atoms increases was studied. The detrimental role of the atoms with slow longitudinal velocity in the sub-Doppler response of the Rb ETC is demonstrated by studies in which the cell is tilted from normal incidence of the laser beam. It is also shown that using an ETC allows us to resolve in a moderate external magnetic field the Zeeman splitting of the hyperfine transitions of the 87Rb D 1 transition F g=1F e=1,2. Received: 19 February 2003 / Revised version: 4 April 2003 / Published online: 2 June 2003 RID="*" ID="*"Corresponding author. Fax: +374/32-31172, E-mail: david@ipr.sci.am  相似文献   

2.
The theoretical investigation is conducted of the strong dependence of sub-Doppler resonances of absorption on the transverse intensity profile of a monochromatic laser beam propagating through a thin cell with rarefied gas medium. The resonances under study correspond to centers of quantum transitions and are caused by the specificity of the optical pumping of atoms during their flight between the walls of a thin cell whose internal thickness is many times smaller than its diameter. The detection of narrow high-contrast sub-Doppler absorption resonances, which are prospective for efficient laser-frequency stabilization, can be facilitated by the proper selection of the radial distribution of the light beam intensity in the cell’s transverse cross section.  相似文献   

3.
Experimental research is carried out into the features of sub-Doppler absorption resonances caused by optical pumping and transit relaxation of Cs atoms in a thin 120-μm cell (with rarefied Cs vapor) for ring-shaped laser beams. Such resonances are analyzed both in the transmission of the single running beam and at the interaction of counterpropagating beams for different degrees of their spatial overlapping in the cell.  相似文献   

4.
Cold atomic beam from a rubidium funnel   总被引:1,自引:0,他引:1  
We report an experimental demonstration of a continuous, slow and cold beam of rubidium atoms from a two-dimensional magneto-optic trap or atomic funnel. Typically 7.3(7)×108 atoms/s are ejected from the funnel with a variable velocity in the range 2–8 m/s and a temperature of 45–55 μK in the moving frame. This represents the first demonstration of sub-Doppler laser cooling in an atomic beam and temperatures as low as ≈25 μK have been observed. Received: 30 September 1999 / Published online: 5 April 2000  相似文献   

5.
We carried out experimental and theoretical research on dark Raman resonances in the absorption of the probe monochromatic wave in a thin vapor cell, whose length is much less than the diameters of probe and coupling laser beams. In this case, only the slow atoms have enough time to settle down to the dark quantum state during a free flight between the end walls of the cell. As a result, a sub-Doppler structure is observed when one sweeps both the coupling and probe laser frequencies keeping the Raman resonance condition. Second harmonic lock-in detection is used to evaluate sharpness of the dark-resonance line. The cell-length dependence of the observed spectral profile is satisfactorily reproduced by the steady-state analysis of the density matrix in which the velocity-dependent transit time effect is taken into account.  相似文献   

6.
This work continues a theoretical investigation of the capabilities of the well-known method based on using a monochromatic probe light beam in combination with optical pumping of atoms (molecules) of a rarefied-gas medium by a broadband radiation in a thin cell the diameter of which is much larger than its internal thickness. In contrast to calculations carried out in the previous publications on this method of spectroscopy, here, we consider the case of arbitrary values of pump intensity and thickness of a cylindrical gas cell. Thus, all the possible mechanisms and specificities of velocity selection of atoms in optically excited levels caused by transit-time relaxation of such atoms in gas cells of this kind are analyzed. Within the framework of this approach, sub-Doppler absorption resonances of the probe light beam corresponding to quantum transitions from the upper level excited by optical pumping are investigated. The obtained results can be used in high-resolution spectroscopy of atoms (molecules), as well as for laser-frequency stabilization to established narrow spectral resonances.  相似文献   

7.
A novel method of stabilizing laser frequency that uses a sub-Doppler spectrum of atoms in a thin vapor cell has been developed. The extended-cavity diode laser is frequency-locked to a hyperfine component of the Cs D2 line. The linewidth and the signal-to-noise ratio of the spectrum are systematically investigated to find a cell length that gives best long-term frequency stability. In the Allan-variance measurements on the beat note between two lasers thus stabilized, a frequency stability of 6.2×10-11 is achieved at an averaging time of 5 s. PACS 42.62.Fi, 42.60.Lh, 39.30.+w  相似文献   

8.
The sub-Doppler absorption laser spectroscopy at 728 nm transition from the 5D5/2 state to the 6 F state of cesium with linewidth near 10 MHz is first experimentally performed with indirect pumping from the ground state 6S_(1/2)to the state 7P_(3/2)by a 455.5 nm diode laser.Using a 455.5 nm diode laser as an indirect pump laser,several excited states will be populated due to spontaneous decay from the 7P state.We first implement the sub-Doppler absorption laser spectroscopy at 728 nm from the 5D_(5/2)state to the 6F state when Cs atoms within thermal glass cell decay to the 5D_(5/2) state.Due to velocity transfer effect,the hyperfine structure of 5D_(5/2)shows a mixed and complicated pattern but very clear structure when the 455.5 nm pumping laser is counter-propagating(or co-propagating)with the 728 nm probing laser.  相似文献   

9.
The effects of a strong control or pump laser, counter propagating or copropagating with the probe beam, on the probe absorption spectra of 85Rb and 87Rb-D2 transitions have been investigated inside a room temperature Rb vapour cell. In both cases a set of strong velocity selective resonance dips are observed at different velocities. Their movements across the Doppler broadened probe absorption profile have been studied for different lock frequencies of the control laser. These spectra are modified by optical pumping effects due to the presence of another hyperfine component of the ground state. A repumping laser, from the dark hyperfine component of the ground level transfers almost 75% of the atoms from the dark state to the pump probe cycle hence reducing the optical pumping effect. A numerical simulation is done to explain the observed spectra. The effect of a control laser on the Lamb dip spectrum of the probe laser has also been investigated. The control beam is used to improve the strength of a weak hyperfine dip on the Doppler broadened probe spectrum. The strength of the hyperfine dip increases by a factor of 3.2 in presence of the control laser. The observed dips show that pump-probe spectroscopy can be used as velocity selectors of atoms.  相似文献   

10.
We have studied theoretically nontrivial specific features of sub-Doppler resonances of saturated absorption in a multilayer gas cell with a rarefied gas medium, which is a compact analog of a large number of plane-parallel atomic beams. Spatially separated saturating and probing monochromatic laser beams that co- and counterpropagate (at the same frequency) in this cell have been considered. In this situation, the action of the light radiation of the saturating beam on the probing beam is determined by optically pumped atoms that fly between the beams under conditions that the longitudinal components of their velocities experience selection due to a specific geometry of the multilayer cell. Such a selection leads to a narrowing of the sub-Doppler resonance in the absorption of the probing beam and decreases the difference between the structures of this resonance for the cases of co- and counterpropagation of the saturating radiation. We have found that, in the considered multilayer cell, the effective width of the sub-Doppler resonance can be smaller (by a factor of about 1.5) than the extremely narrow characteristic width of the well-known Lamb dip in spectroscopy of saturated absorption in the standard gas cell. Results of this study can be used in atomic spectroscopy of ultrahigh resolution and for the laser-frequency stabilization.  相似文献   

11.
We carried out theoretical investigation about velocity-selective atomic excitation on long-lived (metastable) levels of an atomic vapour in a thin cell by a monochromatic laser beam, running in the normal direction. The regime of coherent Rabi oscillations is considered on the light-induced transition from a sublevel of the ground quantum term to a metastable atomic level. On the basis of density matrix equations for the two-level system, we analysed the atomic population density of the metastable level, when the sample is irradiated by resonant monochromatic laser beam with an annular cross-section versus atomic velocities and versus the detuning, the amplitude, and the geometry of the laser beam. It is shown that, in the centre of the annular region, it can be obtained a population distribution on the metastable level as a function of the laser detuning, characterized by a sharp narrow resonance profile, whose width is reduced with respect to the thermal Doppler width roughly by the ratio between the diameter of the irradiated region and the inner thickness of the cell. We suggest high-sensitive schemes, in order to detect these sub-Doppler resonances, by probing the population of the metastable state with a second laser beam, resonant with a transition leaving from the metastable level. The case of 1S0 → 3P1 spin-forbidden transition of Ca is discussed in more detail  相似文献   

12.
The sub-Doppler transmission spectrum in a thin vapour layer (about 150 μm) was observed at room temperature using the wavelength modulation technology. The absorption signal and its second-order harmonic were detected with an external-cavity diode laser. A sub-Doppler spectrum corresponding to resonant transitions of the caesium D_2 line (6S_{1/2}→6P_{3/2}) was demonstrated. The dependence of the transmission signal on the intensity of the laser was also investigated.  相似文献   

13.
An atom faucet   总被引:3,自引:0,他引:3  
We present a simple and efficient source of slow atoms. From a background vapour loaded magneto-optical trap (MOT), a thin laser beam extracts a continuous jet of cold rubidium atoms. The jet that is typical to leaking MOT systems is created without any optical parts placed inside the vacuum chamber. We also present a simple three dimensional numerical simulation of the atomic motion in the presence of these multiple saturating laser fields combined with the inhomogeneous magnetic field of the MOT. At a pressure of P Rb87 = 10-8 mbar and with a moderate laser power of 10 mW per beam, we generate a flux Φ = 1.3×108 atoms/s with a mean velocity of 14 m/s and a divergence of 10 mrad. Received 13 January 2001  相似文献   

14.
Atom lithography with a cold, metastable neon beam   总被引:1,自引:0,他引:1  
We study different aspects of atom lithography with metastable neon atoms. Proximity printing of stencil masks is used to test suitable resists that are sensitive to the internal energy of the atoms, including dodecanethiols on gold and octadecyltrichlorosilanes grown on a SiO2 surface. As an example of patterning the atomic beam with laser light, we create parallel line structures on the surface with a periodicity of half the laser wavelength by locally de-exciting the atoms in a standing quenching wave. Received: 29 June 1999 / Revised version: 30 August 1999 / Published online: 10 November 1999  相似文献   

15.
A novel instrument that employs a high-finesse optical cavity as an absorption cell has been developed for sensitive measurements of gas mixing ratios using near-infrared diode lasers and absorption-spectroscopy techniques. The instrument employs an off-axis trajectory of the laser beam through the cell to yield an effective optical path length of several kilometers without significant unwanted effects due to cavity resonances. As a result, a minimum detectable absorption of approximately 1.4×10-5 over an effective optical path of 4.2 km was obtained in a 1.1-Hz detection bandwidth to yield a detection sensitivity of approximately 3.1×10-11 cm-1 Hz-1/2. The instrument has been used for sensitive measurements of CO, CH4, C2H2 and NH3. Received: 6 May 2002 / Revised version: 31 May 2002 / Published online: 2 September 2002 RID="*" ID="*"Corresponding author. Fax: +1-650/965-7074, E-mail: d.baer@lgrinc.com  相似文献   

16.
We present an experimental study of non-linear selective reflection (SR) at a quartz–Cs-vapor interface in a V-type three-level scheme. The non-linear selective reflection at the Cs D2 resonance line (6 S 1/2F=4→6 P 3/2) is monitored with and without pumping. The sub-Doppler reflection spectrum is observed and the effect of pumping on the signal of the selective reflection is investigated. The experimental result is in agreement with the theoretical calculation. Received: 16 April 2002 / Revised version: 12 June 2002 / Published online: 25 September 2002 RID="*" ID="*"Corresponding author. Fax: +86-351/701-1500, E-mail: zhaojm@sxu.edu.cn  相似文献   

17.
A. Ch. Izmailov 《Laser Physics》2009,19(6):1239-1245
The method of sub-Doppler spectroscopy is theoretically elaborated, which is based on the specific dynamics of a number of optically excited atomic particles (atoms or molecules) of a rarefied gas medium in a thin cell after the action of the resonance pulse of the monochromatic radiation. Corresponding calculations are carried out on the basis of density matrix equations for the resonance optical transition between Zeeman degenerate ground and excited quantum levels of particles in case of the linear polarization of the laser pulse at its normal incidence on the cell. The situation is considered when the radiative lifetime of the excited level is much more than the characteristic transit time of particles between nearest plane-parallel walls of the cell. Then the distribution of a number of excited particles versus the pulse frequency detuning narrows in the process of particles collisions with walls of the cell after action of the laser pulse. The factor of such a narrowing (in comparison with the Doppler broadening of the spectral line of the resonance transition) may be more than the ratio of the characteristic transverse size of the thin gas cell to its inner thickness. We discuss possible use of given sub-Doppler resonances (of the number of excited particles) in the high-resolution spectroscopy and also in high-selective processes of photo-ionization and photo-dissociation, especially, for isotope (or isomer) separation and detection of rare (in particular single) atoms or molecules of a gas medium.  相似文献   

18.
SiO2 composite thin films containing InP nanocrystals were fabricated by radio-frequency magnetron co-sputtering technique. The microstructure of the composite thin films was characterized by X-ray diffraction and Raman spectrum. The optical absorption band edges exhibit marked blueshift with respect to bulk InP due to strong quantum confinement effect. Non-linear optical absorption and non-linear optical refraction were studied by a Z-scan technique using a single Gaussian beam of a He-Ne laser (632.8 nm). We observed the saturation absorption and two-photon absorption in the composite films. An enhanced third-order non-linear optical absorption coefficient and non-linear optical refractive index were achieved in the composite films. The nonlinear optical properties of the films display the dependence on InP nanocrystals size. Received: 27 June 2000 / Accepted: 27 June 2000 / Published online: 13 September 2000  相似文献   

19.
We demonstrate that transitions between Zeeman-split sublevels of Rb atoms are resonantly induced by the motion of the atoms (velocity: approximately 100 m/s) in a periodic magnetostatic field (period: 1 mm) when the Zeeman splitting corresponds to the frequency of the magnetic field experienced by the moving atoms. A circularly polarized laser beam polarizes Rb atoms with a velocity selected using the Doppler effect and detects their magnetic resonance in a thin cell, to which the periodic field is applied with the arrays of parallel current-carrying wires.  相似文献   

20.
A scheme of Doppler-free spectroscopy is experimentally demonstrated with a co-propagating control laser locking to an atomic hyperfine transition, and the differential transmission of the probe and the reference laser is detected. Crossover resonances are eliminated by selecting the class of atoms with zero velocity in the direction of beam propagation. In addition, the sub-Doppler spectrum experiences optical gain compared to the conventional saturated-absorption spectrum as a result of optical pumping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号