首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A systematic study of the adsorption of charged nanoparticles at dispersed oil-in-water emulsion interfaces is presented. The interaction potentials for negatively charged hexadecane droplets with anionic polystyrene latex particles or cationic gold particles are calculated using DLVO theory. Calculations demonstrate that increased ionic strength decreases the decay length of the electrostatic repulsion leading to enhanced particle adsorption. For the case of anionic PS latex particles, the energy barrier for particle adsorption is also reduced when the surface charge is neutralized through changes in pH. Complementary small-angle scattering experiments show that the highest particle adsorption for PS latex occurs at moderate ionic strength and low pH. For cationic gold particles, simple DLVO calculations also explain scattering results showing that the highest particle adsorption occurs at neutral pH due to the electrostatic attraction between oppositely charged surfaces. This work demonstrates that surface charges of particles and oil droplets are critical parameters to consider when engineering particle-stabilized emulsions.  相似文献   

2.
A general characteristics is given to the kinetics of electroreduction of cerium-decatugstate anions on mercury, polycrystalline gold, and the pyrolytic-graphite basis plane in acetate buffer solutions (pH 3.5-6.0). Based on the analysis of UV absorption spectra, the ratio of two reactant forms differing in the protonation degree in solutions under study is estimated. At a negatively charged mercury electrode, the reduction of the Ce(IV) central ion is shown to proceed as an outer-sphere process with classical manifestations of the psi-prime effect (polarization curves reveal a current minimum which deepens with supporting electrolyte dilution and an increase in the reactant negative charge). On the positively charged surface, the current is observed to increase with an increase in the supporting electrolyte concentration, which is interpreted in terms of the strong adsorption of the reactant and its coadsorption with cations. The gold electrode demonstrates pronounced effects of strong chemisorption. Adsorption complications observed on pyrolytic graphite are shown to become strongther for surfaces with more pronounced nonideal behavior. For low concentrations of atomar steps (apparently, for low coverages of pyrolytic-graphite surface with the adsorbed reactant), the quasireversible electron transfer with the rate increasing with increasing pH is observed.  相似文献   

3.
This study examines the influence of electrostatic interactions on enzyme surface diffusion and the contribution of diffusion to interfacial biocatalysis. Surface diffusion, adsorption, and reaction were investigated on an immobilized bovine serum albumin (BSA) multilayer substrate over a range of solution ionic strength values. Interfacial charge of the enzyme and substrate surface was maintained by performing the measurements at a fixed pH; therefore, electrostatic interactions were manipulated by changing the ionic strength. The interfacial processes were investigated using a combination of techniques: fluorescence recovery after photobleaching, surface plasmon resonance, and surface plasmon fluorescence spectroscopy. We used an enzyme charge ladder with a net charge ranging from -2 to +4 with respect to the parent to systematically probe the contribution of electrostatics in interfacial enzyme biocatalysis on a charged substrate. The correlation between reaction rate and adsorption was determined for each charge variant within the ladder, each of which displayed a maximum rate at an intermediate surface concentration. Both the maximum reaction rate and adsorption value at which this maximum rate occurs increased in magnitude for the more positive variants. In addition, the specific enzyme activity increased as the level of adsorption decreased, and for the lowest adsorption values, the specific enzyme activity was enhanced compared to the trend at higher surface concentrations. At a fixed level of adsorption, the specific enzyme activity increased with positive enzyme charge; however, this effect offers diminishing returns as the enzyme becomes more highly charged. We examined the effect of electrostatic interactions on surface diffusion. As the binding affinity was reduced by increasing the solution ionic strength, thus weakening electrostatic interaction, the rate of surface diffusion increased considerably. The enhancement in specific activity achieved at the lowest adsorption values is explained by the substantial rise in surface diffusion at high ionic strength due to decreased interactions with the surface. Overall, knowledge of the electrostatic interactions can be used to control surface parameters such as surface concentration and surface diffusion, which intimately correlate with surface biocatalysis. We propose that the maximum reaction rate results from a balance between adsorption and surface diffusion. The above finding suggests enzyme engineering and process design strategies for improving interfacial biocatalysis in industrial, pharmaceutical, and food applications.  相似文献   

4.
研究蛋白质在固相表面的静电吸附特性,进而控制蛋白质在修饰表面的静电吸附尤为重要,表面等离子体子共振可以检测金属表面吸附物质厚度和折射率的变化^[1]。这种技术已在研究生物分子相互作用^[2]和考察自组装单层的形成^[3]及蛋白质在固体表面吸附行为^[9-11]等方面得到广泛的应用。对蛋白质在固体表面吸附行为的研究多为考察不同的蛋白质在不同的修饰表面的吸附行为。然而,对蛋白质在修饰表面静电吸附的本质影响因素的研究却少有报道^[4]。本文使用表面等离子体子共振技术实时研究了蛋白质在甲羧基化葡聚糖修饰表面的静电吸附与溶液pH值及离子强度的依赖关系。  相似文献   

5.
《Electroanalysis》2017,29(2):324-329
An indium tin oxide (ITO) electrode prepared on a flexible polymeric support was modified with an amino‐silane and then functionalized with trigonelline and 4‐carboxyphenylboronic acid covalently bound to the amino groups. The trigonelline species containing quarterized ammonium group produced positive charge on the electrode surface regardless of the pH value, while the phenylboronic acid species were neutral below pH 8 and negatively charged above pH 9 (note that their pKa=8.4). The total charge on the monolayer‐modified electrode was positive at the neutral pH and negative at pH>9 (note that 4‐carboxyphenylboronic acid was attached to the electrode surface in excess to trigonelline, thus allowing the negative charge to dominate on the electrode surface at basic pH). Single‐stranded DNA molecules were loaded on the modified electrode at pH 7.0 due to their electrostatic attraction to the positively charged surface. By applying electrolysis at −1.0 V (vs. Ag/AgCl reference) electrochemical oxygen reduction resulted in the consumption of hydrogen ions and local pH increase in the vicinity of the electrode surface. The process resulted in the transition to the total negative charge due to the negative charges formed on the phenylboronic acid species. This resulted in the electrostatic repulsion and release of the loaded DNA. The developed approach allowed the electrochemically‐triggered DNA release not only in the aqueous solutions, but also in human serum solution, thus giving promise for future biomedical applications.  相似文献   

6.
《Electroanalysis》2017,29(6):1543-1553
A graphene‐functionalized carbon fiber electrode was modified with adsorbed polyethylenimine to introduce amino functionalities and then with trigonelline and 4‐carboxyphenylboronic acid covalently bound to the amino groups. The trigonelline species containing quarterized pyridine groups produced positive charge on the electrode surface regardless of the pH value, while the phenylboronic acid species were neutral below pH 8 and negatively charged above pH 9 (note that their pKa=8.4). The total charge on the monolayer‐modified electrode was positive at the neutral pH and negative at pH > 9. Note that 4‐carboxyphenylboronic acid was attached to the electrode surface in molar excess to trigonelline, thus allowing the negative charge to dominate on the electrode surface at basic pH. Negatively charged fluorescent dye‐labeled insulin (insulin‐FITC) was loaded on the modified electrode surface at pH 7.0 due to its electrostatic attraction to the positively charged interface. The local pH in close vicinity to the electrode surface was increased to ca. 9–10 due to consumption of H+ ions upon electrochemical reduction of oxygen proceeding at the potential of −1.0 V (vs. Ag/AgCl) applied on the modified electrode. The process resulted in recharging of the electrode surface to the negative value due to the formation of the negative charge on the phenylboronic acid groups, thus resulting in the electrostatic repulsion of insulin‐FITC and stimulating its release from the electrode surface. The insulin release was characterized by fluorescence spectroscopy (using the FITC‐labeled insulin), by electrochemical measurements on an iridium oxide, IrOx, electrode and by mass spectrometry. The graphene‐functionalized carbon fiber electrode demonstrated significant advantages in the signal‐stimulated insulin release comparing with the carbon fiber electrode without the graphene species.  相似文献   

7.
We report on a novel hydrogen peroxide biosensor that was fabricated by the layer-by-layer deposition method. Thionine was first deposited on a glassy carbon electrode by two-step electropolymerization to form a positively charged surface. The negatively charged gold nanoparticles and positively charged horseradish peroxidase were then immobilized onto the electrode via electrostatic adsorption. The sequential deposition process was characterized using electrochemical impedance spectroscopy by monitoring the impedance change of the electrode surface during the construction process. The electrochemical behaviour of the modified electrode and its response to hydrogen peroxide were studied by cyclic voltammetry. The effects of the experimental variables on the amperometric determination of H2O2 such as solution pH and applied potential were investigated for optimum analytical performance. Under the optimized conditions, the biosensor exhibited linear response to H2O2 in the concentration ranges from 0.20 to 1.6?mM and 1.6 to 4.0?mM, with a detection limit of 0.067?mM (at an S/N of 3). In addition, the stability and reproducibility of this biosensor was also evaluated and gave satisfactory results.
Figure
A novel hydrogen peroxide biosensor was fabricated via layer-by-layer depositing approach. Thionine was first deposited on a glassy carbon electrode by electropolymerization to form a positively charged surface (PTH). Negatively charged gold nanoparticles (NPs) and positively charged horseradish peroxidase (HRP) were then immobilized onto the electrode via electrostatic adsorption.  相似文献   

8.
An experimental investigation on the adsorption of F(ab')2 from rabbit IgG onto polystyrene (PS) latex beads is described. All adsorption isotherms were of high affinity and showed well-defined plateaus. Maximum protein adsorption was found around the average isoelectric point (IEP) of the dissolved protein. According to the findings, the F(ab')2 adsorption on the polystyrene surface is strongly irreversible with respect to ionic strength changes. The pH changes, however, exert a certain effect on the adsorption-desorption process of F(ab')2 on negatively charged polystyrene surfaces. In order to determine the role played by the electrostatic forces in the F(ab')2 adsorption onto negatively charged latex particles, an electrokinetic study of the protein-latex complexes has also been carried out. The isoelectric pH of the F(ab')2-PS complexes is always smaller than the IEP of the dissolved F(ab')2, indicating that the PS surface charge must partly compensate the positive charge on the protein. Finally, a comprehensive study on the colloidal stability of the sensitized latex beads was performed.  相似文献   

9.
The regularities of adsorption of a cationic polyelectrolyte, poly(diallyldimethylammonium chloride), on the surface of fused quartz are studied at different values of solution pH by capillary electrokinetics. It is shown that the polyelectrolyte adsorption on a negatively charged surface depends on the value of the surface charge and increases with its growth. At a low charge value (pH 3.8), the polyelectrolyte adsorption increases the quartz surface charge. The driving forces of the adsorption are both electrostatic interaction and forces of nonelectrostatic nature, probably hydrophobic interactions and a change in entropy due to the displacement of counterions from a double layer. The adsorption of poly(diallyldimethylammonium chloride) on quartz from alkaline and neutral solutions is irreversible, which indicates the key role of the electrostatic interaction. At low values of the surface charge, the nonelectrostatic interactions play the main role, thereby resulting in polyelectrolyte desorption.  相似文献   

10.
Dynamic surface elasticity of solutions of bovine serum albumin (BSA)/sodium polystyrene sulfonate (PSS) complexes has been measured as depending on the age of a surface, polyelectrolyte concentration, and solution pH by the oscillating-ring method. At pH values below the isoelectric point of BSA, the rate of variations in the surface properties increases due to a decrease in the electrostatic adsorption barrier as a result of a reduction in the total charge of the protein/polyelectrolyte complex. Therewith, a local maximum arises in the kinetic dependences of the surface elasticity, this maximum indicating the onset of the breakage of the tertiary structure of the protein in the surface layer. In the pH range corresponding to like charges of the protein and polyelectrolyte, variations in the surface properties slow down. In this case, the BSA/PSS complex is also formed via the interaction of PSS with those domains of globule surface that carry a charge opposite to the total charge of a protein molecule. A higher negative charge of the complex than that of protein globules increases the electrostatic adsorption barrier and decelerates variations in the surface properties. At the same time, the dependences of the surface elasticity on the surface pressure coincide with the dependences for the protein solution. Hence, the polyelectrolyte-protein interaction affects only the adsorption kinetics, while the surface properties in the vicinity of equilibrium are governed by adsorbed protein globules.  相似文献   

11.
Deore BA  Shiigi H  Nagaoka T 《Talanta》2002,58(6):1203-1211
The successful pulsed amperometric detection of underivatized amino acids have been carried out in an acidic media on a polypyrrole (PPy) modified Cu electrode. The formation of PPy film doped with glutamate (glu) on a Cu electrode surface changes the mechanism of Cu dissolution. After application of multistep potential waveform, the PPy film was glu free due to the electro-reduction and overoxidation. High anodic potential polarization treatment yielded partially overoxidized PPy film as long as the Cu surface dissolution and amino acid permeation through the film was well controlled. This overoxidized PPy film acted as a charge and size exclusion barrier in order to improve the selectivity and stability of a Cu electrode. Various process parameters such as film modification time, detection and cleaning potential and pH of solution have been optimized to maximize the beneficial electrocatalytic properties of the electrode surface. At an optimized condition, detection limits for positively charged histidine and arginine are 19 and 22 pg respectively, whereas the neutral amino acids detected in amounts of 0.9–2.3 ng. Furthermore, the PPy coated Cu electrode response was long lived, stable and reproducible.  相似文献   

12.
IntroductionThe metal colloids have been investigated for over l40 years since Faraday['] made thefirst approach on gold colloids. Colloidal Au can be used for catalysis['], microanalysis of pro--tein and biosensors[3J and its fine particles have been expected to be a highly efficient thirdnon1inear optical material[4'5J. However, most studies on the surface chemistry of metal parti-cles have been focused on silver[6], the reason is that the plasmon absorption band of that met-al is very str…  相似文献   

13.
Using differential capacity and chronocoulometry, we have studied the electrosorption of 4-(dimethylamino)pyridine (DMAP) on polycrystalline gold electrode surfaces. Our results indicate that the orientation of DMAP is highly dependent on the electrode potential and electrolyte pH. At pH values at or above the primary pKa, the adsorbed species is DMAP and orients vertically on the electrode surface via the lone pair of electrons on the pyridine ring's nitrogen atom. At very low pH values (<3) the adsorbed species is the protonated ion, DMAPH+, which can be desorbed from the electrode surface when the metal's surface charge density is made appreciably positive of the potential of zero charge. At intermediate electrolyte pH, either DMAP or DMAPH+ is adsorbed on the surface depending on the electrode's potential. At negative charge densities, DMAPH+ lies nearly flat on the gold electrode and the surface coverage is correspondingly low. When the electrode is positively charged, the adsorbate undergoes a phase transition to a vertical orientation and is simultaneously deprotonated to DMAP. Our results rationalize the stability of DMAP-ligated gold nanoparticles as a function of pH and demonstrate that the ligand's surface coverage is the principal factor in determining the stability of the colloidal system.  相似文献   

14.
The importance of substrate chemistry and structure on supported phospholipid bilayer design and functionality is only recently being recognized. Our goal is to investigate systematically the substrate-dependence of phospholipid adsorption with an emphasis on oxide surface chemistry and to determine the dominant controlling forces. We obtained bulk adsorption isotherms at 55 degrees C for dipalmitoylphosphatidylcholine (DPPC) at pH values of 5.0, 7.2, and 9.0 and at two ionic strengths with and without Ca(2+), on quartz (alpha-SiO(2)), rutile (alpha-TiO(2)), and corundum (alpha-Al(2)O(3)), which represent a wide a range of points of zero charge (PZC). Adsorption was strongly oxide- and pH-dependent. At pH 5.0, adsorption increased as quartz < rutile approximately corundum, while at pH 7.2 and 9.0, the trend was quartz approximately rutile < corundum. Adsorption decreased with increasing pH (increasing negative surface charge), although adsorption occurred even at pH > or = PZC of the oxides. These trends indicate that adsorption is controlled by attractive van der Waals forces and further modified by electrostatic interactions of oxide surface sites with the negatively charged phosphate ester (-R(PO(4)-)R'-) portion of the DPPC headgroup. Also, the maximum observed adsorption on negatively charged oxide surfaces corresponded to roughly two bilayers, whereas significantly higher adsorption of up to four bilayers occurred on positively charged surfaces. Calcium ions promote adsorption beyond a second bilayer, regardless of the sign of oxide surface charge. We develop a conceptual model for the structure of the electric double layer to explain these observations.  相似文献   

15.
Using an optical reflectometer with impinging-jet system, the adsorption from aqueous solution onto gold of three charged macromolecules has been studied: the strong linear-chain polyelectrolyte polyvinyl pyridine (PVP(+)), the fifth-generation poly(propylene imine) dendrimer DAB-64, which has a pH-dependent charge and a relatively fixed shape, and the protein lysozyme, of which both the charge and the structure-stability are dependent on solution composition. Experimental conditions that have been varied include the adsorbate concentration, electrolyte concentration, pH, and externally applied potential across the gold/solution interface. Making use of the earlier established dependency of the double layer potential of the gold substrate on solution conditions and externally applied potential, the results of measurements as a function of pH and as a function of external potential control are compared. The total set of results enables us to draw conclusions with respect to the relative importance of electrostatic interactions for the adsorption process. PVP(+) adsorption follows the electric potential of the gold/solution interface and is further determined by a rather strong nonelectrostatic affinity between segments and surface. The adsorption behavior of DAB-64 is not quite understood, but electrostatic interactions with the gold surface seem to play a minor role. For lysozyme, surface-induced conformational changes dominate the adsorption process. The extent of spreading of the molecules decreases with increasing polarity of the surface, resulting in a minimum in adsorbed amount around the point of zero potential of the gold.  相似文献   

16.
The electrostatic interactions between amphoteric polymethyl methacrylate latex particles and proteins with different pI values were investigated. These latex particles possess a net positive charge at low pH, but they become negatively charged at high pH. The nature and degree of interactions between these polymer particles and proteins are primarily controlled by the electrostatic characteristics of the particles and proteins under the experimental conditions. The self-promoting adsorption process from the charge neutralization of latex particles by the proteins, which have the opposite net charge to that of the particles, leads to a rapid reduction in the zeta potential of the particles (in other words colloidal stability), and so strong flocculation occurs. On the other hand, the electrostatic repulsion forces between similarly charged latex particles and the proteins retard the adsorption of protein molecules onto the surfaces of the particles. Therefore, latex particles exhibit excellent colloidal stability over a wide range of protein concentrations. A transition from net negative charge to net positive charge, and vice versa (charge reversal), was observed when the particle surface charge density was not high enough to be predominant in the protein adsorption process.  相似文献   

17.
A novel method to immobilize barley protoplasts on the poly(diallyl dimethyl ammonium chloride) gold/(PDADMAC) electrode was developed for the purpose to measure the photoelectric behavior of barley protoplasts. The electrochemical quartz crystal microbalance (EQCM) results show that the thickness of the adsorbed PDADMAC layer is 2.4 nm. The barley protoplasts are immobilized on the surface of gold/PDADMAC electrode due to the electrostatic adsorption between negatively charged protoplasts and positively charged PDADMAC. The fluorescence image taken by laser scanning confocal microscope shows that the attached barley protoplasts are integrity. For the gold/PDADMAC/barley protoplast electrode an anodic photocurrent was observed under the irradiation of white light (wavelength of 200–800 nm) and its properties are discussed. This novel method may provide a convenient technique for immobilizing cells or other bio-particles on the surface of electrode for studying their electrochemical characters.  相似文献   

18.
Monte Carlo simulations were performed to study the adsorption and orientation of antibodies on charged surfaces based on both colloidal and all-atom models. The colloidal model antibody consists of 12 connected beads representing the 12 domains of an antibody molecule. The structure of the all-atom antibody model was taken from the protein databank. The effects of the surface charge sign and density, the solution pH and ionic strength on the adsorption and orientation of different colloidal model antibodies with different dipole moments were examined. Simulation results show that both the 12-bead and the all-atom models of the antibody, for which the dipole moment points from the Fc to (Fab)2 fragments, tend to have the desired "end-on" orientation on positively charged surfaces and undesired "head-on" orientation on negatively charged surfaces at high surface charge density and low solution ionic strength where electrostatic interactions dominate. At low surface charge density and high solution ionic strength where van der Waals interactions dominate, 12-bead model antibodies tend to have "lying-flat" orientation on surfaces. The orientation of adsorbed antibodies results from the compromise between electrostatic and van der Waals interactions. The dipole moment of an antibody is an important factor for antibody orientation on charged surfaces when electrostatic interactions dominate. This charge-driven protein orientation hypothesis was verified by our simulations results in this work. It was further confirmed by surface plasmon resonance biosensor and time-of-flight secondary ion mass spectrometry experiments reported elsewhere.  相似文献   

19.
The buildup of layer-by-layer assemblies onto gold surfaces from water-soluble charged polyelectrolytes and proteins is examined using quartz crystal microgravimetry (QCM) and electrochemical techniques. Polyelectrolytes such as poly(styrenesulfonate) and poly(ester sulfonic acid) (Eastman AQ-29D polymer) adsorb spontaneously onto gold, contrary to poly(ethyleneimine). From the modification of the gold surface with a thiol and specific adsorption of polymers under polarization conditions, it is concluded that the hydrophobicity of the gold surface seems to be a determining factor in the adsorption process. Alternate adsorption onto gold resonators first coated with AQ-29D polymer gives stable multilayer films in the case of positively charged lysozyme (pI = 11) or polyheme Desulfovibrio vulgaris Hildenborough cytochrome c3 (pI = 10.5). QCM frequency changes with the number of adsorption steps suggest that a linear increase in film mass occurs. Desulfomicrobium norvegicum polyheme cytochrome c3 (pI = 7), which has a null global charge at neutral pH, is shown to give also stable multilayer AQ-29D/cytochrome c3 films, suggesting that several types of interactions, especially the hydrophobic effect, are involved in the buildup process.  相似文献   

20.
Upon adsorbing on a solid-state substrate, water-soluble proteins are prone to denaturation and deterioration of their functions due to the conformation change. The surface electric field of a conductive substrate is one of the important factors that influence the character of adsorbed proteins. In this work, a 3D macroporous gold electrode has been prepared and served as the working electrode to study the influence of surface electric field on the adsorption kinetics and conformation of the adsorbed cytochrome c (cyt-c) with the help of electrochemical, in situ electrochemical IR spectroscopic, atomic force microscopic, and contact angle measurements. The external electric field creates excess surface charge which can manipulate the adsorption rate of proteins on the substrate by the enhanced electrostatic interactions between the electrode and protein patches by coupling with complementary charges. The amount of immobilized cyt-c with electrochemical activity on the 3D macroporous gold electrode showed a minimum at potential of zero charge (PZC) and it increased with increasing net excess surface charge. Higher electric field could influence the conformation and the corresponding properties such as direct electrochemistry, bioactivity, and surface character of the adsorbed cyt-c molecules. However, high external electric field leads to damage of the protein secondary structure. This study provides fundamentals for the fabrication of biomolecular devices, biosensors, and biofuel cells through electrostatic interactions. Figure Two cases are illustrated for the protein immobilized on electrode surfaces: a retention of protein structure under moderate excess surface charge, b denaturation and conformation change of proteins adsorbed at high excess surface charge, e.g., due to the higher external electric field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号