首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated optical properties of single gold nanorods by using an apertured-type scanning near-field optical microscope. Near-field transmission spectrum of single gold nanorod shows several longitudinal surface plasmon resonances. Transmission images observed at these resonance wavelengths show oscillating pattern along the long axis of the nanorod. The number of oscillation increases with decrement of observing wavelength. These spatial characteristics were well reproduced by calculated local density-of-states maps and were attributed to spatial characteristics of plasmon modes inside the nanorods. Dispersion relation for plasmons in gold nanorods was obtained by plotting the resonance frequencies of the plasmon modes versus the wave vectors obtained from the transmission images.  相似文献   

2.
ZnO/Zn0.8Mg0.2O coaxial nanorod heterostructures were prepared by employing catalyst-free metal-organic vapor-phase epitaxy, and their structural and photoluminescent (PL) properties were investigated using transmission electron microscopy (TEM) and temperature-dependent PL spectroscopy. TEM images show that ZnO/Zn0.8Mg0.2O layers were epitaxially grown on the entire surfaces of the ZnO nanorods and the ZnO nanorod diameters as a core material were as small as 9 +/- 2 nm. A dominant PL peak was observed at 3.316 eV, from room-temperature PL spectra of ZnO/Zn0.8Mg0.2O coaxial nanorod heterostructures with ZnO core diameters of 9 nm, indicating a PL blue shift of 30 meV, which resulted from a quantum confinement effect along the radial direction in ZnO nanorods. Furthermore, temperature-dependent PL properties of the coaxial nanorod heterostructures were investigated, showing much higher PL intensity for the coaxial nanorod heterostructures than that of bare ZnO nanorods at room temperature. The origin of the enhanced PL intensity and reduced thermal quenching for the coaxial nanorod heterostructures is also discussed.  相似文献   

3.
We report the construction of a novel biosensing nanodevice to detect single, sequence-specific target DNA molecules. Nanodevice assembly occurs through the association of an immobilized F1-ATPase molecular motor and a functionalized gold nanorod via a single 3',5'-dibiotinylated DNA molecule. Target-dependent 3',5'-dibiotinylated DNA bridges form by combining ligation and exonucleation reactions (LXR), with a specificity capable of selecting against a single nucleotide polymorphism (SNP). Using dark field microscopy to detect gold nanorods, quantitation of assembled nanodevices is sufficient to distinguish the presence of as few as 1800 DNA bridges from nonspecifically bound nanorods. The rotary mechanism of F1-ATPase can drive gold nanorod rotation when the nanorod is attached via the DNA bridge. Therefore, rotation discriminates fully assembled devices from nonspecifically bound nanorods, resulting in a sensitivity limit of one zeptomole (600 molecules).  相似文献   

4.
Surface plasmon resonances of metal nanoparticles have shown significant promise for the use of solar energy to drive catalytic chemical reactions. More importantly, understanding and monitoring such catalytic reactions at single‐nanoparticle level is crucial for the study of local reaction processes. Herein, using plasmonic photoluminescence (PL) spectroscopy, we describe a novel sensing method for catalytic ethanol oxidation reactions at the single‐nanoparticle level. The Au nanorod monitors the interfacial interaction with ethanol during the catalytic reaction through the PL intensity changes in the single‐particle PL spectra. The analysis of energy relaxation of excited electron–hole pairs indicates the relationship between the PL quenching and ethanol oxidation reaction on the single Au nanorod.  相似文献   

5.
Truong PL  Cao C  Park S  Kim M  Sim SJ 《Lab on a chip》2011,11(15):2591-2597
Herein, we present the use of a single gold nanorod sensor for detection of diseases on an antibody-functionalized surface, based on antibody-antigen interaction and the localized surface plasmon resonance (LSPR) λ(max) shifts of the resonant Rayleigh light scattering spectra. By replacing the cetyltrimethylammonium bromide (CTAB), a tightly packed self-assembled monolayer of HS(CH(2))(11)(OCH(2)CH(2))(6)OCH(2)COOH(OEG(6)) has been successfully formed on the gold nanorod surface prior to the LSPR sensing, leading to the successful fabrication of individual gold nanorod immunosensors. Using prostate specific antigen (PSA) as a protein biomarker, the lowest concentration experimentally detected was as low as 111 aM, corresponding to a 2.79 nm LSPR λ(max) shift. These results indicate that the detection platform is very sensitive and outperforms detection limits of commercial tests for PSA so far. Correlatively, its detection limit can be equally compared to the assays based on DNA biobarcodes. This study shows that a gold nanorod has been used as a single nanobiosensor to detect antigens for the first time; and the detection method based on the resonant Rayleigh scattering spectrum of individual gold nanorods enables a simple, label-free detection with ultrahigh sensitivity.  相似文献   

6.
We investigated the two-photon-induced photoluminescence properties of single gold nanorods by scanning near-field spectroscopy. The process was found to be initiated by a sequential one-photon absorption for creating a pair of an electron and a hole in the sp and d bands. Photoluminescence is then radiated when the electron near the Fermi surface recombines with the hole near the X and L symmetry points. The polarization characteristics of emitted photons from the X and L regions were found to be different. These characteristics can be understood by the crystalline structure and the band structure of the gold nanorod. We found characteristic spatial oscillatory features along the long axis of the nanorods in photoluminescence excitation images. The images were well reproduced by density-of-states maps of the nanorods calculated with Green's dyadic method and were attributed to the spatial characteristics of the wave functions of the plasmon modes inside the nanorods.  相似文献   

7.
A square pattern of thioctic acid self-assembled ZnO nanorod arrays was grown on a large 4-in. thermoplastic polyurethane (TPU) flexible substrate via an in situ soluthermal process at low temperature (348 K). With the addition of dimercaptosuccinic acid (DMSA), the surface chemistry forms a disordered ZnO phase, and the morphology of the ZnO-DMSA nanorods changes with various DMSA addition times. As evidenced by the Zn2p3/2, C1s, O1s, S2p, and N-1s scans of X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), DMSA and proteins were conjugated on the single crystalline ZnO nanorods. The photoluminescence (PL) spectra indicated that the optical properties of ZnO nanorod arrays were changed while the DMSA was inserted, and proteins were conjugated. Furthermore, a control test found that the ZnO nanorods show a significant improvement in sensitive characterization over the ZnO film. As another proteins (e.g., human serum albumin, HSA) were bound onto the ZnO-bovine serum albumin (BSA) nanorod arrays, an enhanced ultraviolet emission intensity was detected. On the basis of these results, one might be expected to conjugate specific biomolecules on the biofunctional ZnO nanorod arrays to detect the complementary biomolecules by PL detecting.  相似文献   

8.
We report herein biotin-streptavidin-mediated aggregation studies of long gold nanorods. We have previously demonstrated end-to-end linkages of gold nanorods driven by the biotin-streptavidin interaction (Caswell et al. J. Am. Chem. Soc. 2003, 125, 13914). In that report, the specific binding of biotin disulfide to the gold nanorod edges was achieved due to the preferred binding of thiol molecules to the Au[111] surface (gold nanorod ends) as opposed to the gold nanorod side faces. This led to the end-end linkage of gold nanorods upon subsequent addition of streptavidin. In this report we demonstrate a simple procedure to biotinylate the entire gold nanorod surface and subsequently form a 3-D assembly by addition of streptavidin. Gold nanorods were synthesized by the three-step seeding protocol documented in our previous articles. The surface of gold nanorods was further modified by a layer of a weak polyelectrolyte, poly(acrylic acid), PAA. A biotin molecule which has an amine group at one end (biotin-PEO-amine) was anchored to the carboxylic acid group of the polyelectrolyte using the well-known carbodiimide chemistry. This process biotinylates the entire gold nanorod surface. Addition of streptavidin further leads to aggregation of gold nanorods. A closer look at the aggregates reveals a preferential side-to-side assembly of gold nanorods. The gold nanorods were characterized at each stage by UV-vis spectroscopy, light scattering, and transmission electron microscopy (TEM) measurements.  相似文献   

9.
Capillary assembly was explored for the precise placement of 25 nm × 70 nm colloidal gold nanorods on prestructured poly(dimethylsiloxane) template surfaces. The concentration of nanorods and cationic surfactant cetyltrimethylammonium bromide (CTAB), the template wettability, and most critically the convective transport of the dispersed nanorods were tuned to study their effect on the resulting assembly yield. It is shown that gold nanorods can be placed into arrayed 120-nm diameter holes, achieving assembly yields as high as 95% when the local concentration of nanorods at the receding contact line is sufficiently high. Regular arrays of gold nanorods have several benefits over randomly deposited nanorod arrangements. Each assembled nanorod resides at a precisely defined location and can easily be found for subsequent characterization or direct utilization in a device. The former is illustrated by collecting scattering spectra from single nanorods and nanorod dimers, followed by subsequent SEM characterization without the need for intricate registration schemes.  相似文献   

10.
Zinc Oxide (ZnO) nanorod arrays were grown on different substrates by hydrothermal method. The crystallinity of ZnO nanorod was regularly investigated by X-ray diffraction (XRD). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to examine morphology of the ZnO nanorods. The results indicate that the nanorods grow along [002] orientation. SEM and TEM images and XRD patterns show that the growth of ZnO nanorods on graphene/Quartz substrate is better than the other substrates due to the number and size of the nanorods which are highly affected through the properties of ZnO seed layers and it has lower defects than the other substrates. PL spectra ZnO would have a higher concentration of oxygen vacancy.  相似文献   

11.
In this study, a natural cotton thread immunoassay device combined with gold nanorod (GNR) reporter probe is developed for the rapid, sensitive and quantitative electrochemical determination of human ferritin, a lung cancer related biomarker. Human ferritin as an analyte and a pair of monoclonal antibodies are used to demonstrate the proof-of-concept on the cotton thread immunoassay device. An enhancement of the sensitivity is achieved by using gold nanorod as an electroactive report probe compared with a traditional gold nanoparticle (GNP) report probe. The device was capable of measuring 1.58 ng/mL ferritin in 30 min by anodic stripping voltammetry (ASV) testing, which meet the requirement for clinical diagnosis.  相似文献   

12.
Functionality of gold nanorod structures as ultra-sensitive optical rulers is demonstrated. Arrays of gold nanorods were fabricated by electron beam lithography and lift-off techniques with high accuracy and uniformity. Their longitudinal plasmon scattering spectra were found to exhibit extreme sensitivity to the length of the nanorods. This phenomenon enables optical detection of the nanorod length variations comparable to the thickness of a few atomic layers of gold.  相似文献   

13.
The effects of the local environment on surface-enhanced Raman scattering (SERS) spectra utilizing gold, silver, and gold/silver striped nanorod array substrates was investigated. The arrays were fabricated using an electrochemical metal deposition into an anodic aluminum oxide template. The analyte chosen for this study was p-nitroso-N,N-dimethylaniline (p-NDMA), which has an electronic structure that is highly sensitive to its surrounding environment. Changes in the peak positions and peak ratios were used to probe the influence of water and the striping pattern on the SERS signal of p-NDMA. We present the results of the fabrication and characterization of the nanorod array substrates, as well as SERS spectra of p-NDMA in both polar and nonpolar environments and SERS spectra on a variety of striped nanorod arrays. The Raman data suggests that the p-NDMA molecule exists in a more polarized state when bound to the gold as compared to the silver rods. We have attempted to use these differences to determine whether the SERS signal predominantly arises from the tips of the rods or from the interior of the array.  相似文献   

14.
Defects in ZnO nanorods prepared by a hydrothermal method   总被引:5,自引:0,他引:5  
ZnO nanorod arrays were fabricated using a hydrothermal method. The nanorods were studied by scanning electron microscopy, photoluminescence (PL), time-resolved PL, X-ray photoelectron spectroscopy, and positron annihilation spectroscopy before and after annealing in different environments and at different temperatures. Annealing atmosphere and temperature had significant effects on the PL spectrum, while in all cases the positron diffusion length and PL decay times were increased. We found that, while the defect emission can be significantly reduced by annealing at 200 degrees C, the rods still have large defect concentrations as confirmed by their low positron diffusion length and short PL decay time constants.  相似文献   

15.
Organo-soluble porphyrin mixed monolayer-protected gold nanorods were synthesized and characterized. The resulting gold nanorods encapsulated by both porphyrin thiol and alkyl thiol on their entire surface with strong covalent Au-S linkages were very stable in organic solvents without aggregation or decomposition and exhibited unique optical properties different from their corresponding spherical ones. Alkyl thiol acts as a stabilizer not only to fill up the potential space on gold nanorod surface between bulky porphyrin molecules but also to provide space for further insertion of C(60) molecules forming a stable C(60)-porphyrin-gold nanorod hybrid nanostructure.  相似文献   

16.
We report the immobilization of gold nanorods onto self-assembled monolayers (SAMs) of 16-mercaptohexadecanoic acid (16-MHA). The simple two step protocol involves formation of a SAM of 16-MHA molecules onto gold-coated glass slides and subsequent immersion of these slides into the gold nanorod solution. The nanorods, formed by a seed-mediated, surfactant-assisted synthesis protocol, are stabilized in solution due to surface modification by the surfactant cetyltrimethylammonium bromide (CTAB). Attractive electrostatic interactions between the carboxylic acid group on the SAM and the positively charged CTAB molecules are likely responsible for the nanorod immobilization. UV-vis spectroscopy has been used to follow the kinetics of the nanorod immobilization. The nature of interaction between the gold nanorods and the 16-MHA SAM has been probed by Fourier transform infrared spectroscopy (FTIR). The surface morphology of the immobilized rods is studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM) measurements. SEM was also used to determine the density of the immobilized nanorods as a function of the pH of immobilization. Control over the surface coverage of the immobilized gold nanorods has been demonstrated by simple pH variation. Such well-dispersed immobilized gold nanorods with control over the surface coverage could be interesting substrates for applications such as surface-enhanced Raman spectroscopy (SERS).  相似文献   

17.
A mild template-free aqueous route was successfully established to synthesize well-aligned ZnO nanorod arrays, which were proved to exhibit high optical property by PL spectra.  相似文献   

18.
In this paper, we investigate the roles of gold catalyst using modified thermal evaporation set-up in the growth process of ZnMgO nanowires. ZnMgO nanowires are fabricated on silicon substrates using different thickness of gold catalyst. A simple horizontal double-tube system along with chemical vapor diffusion of the precursors, based on Fick’s first law, is used to grow the ZnMgO nanowires. Field emission scanning electron microscopy images show that the ZnMgO nanowires are tapered. The optical properties of the ZnMgO nanowires are characterized by room temperature photoluminescence (PL) measurements. The PL studies demonstrate that the ZnMgO nanowires grown using this method have good crystallinity with excellent optical properties and have a larger band-gap in comparison to the pure ZnO nanowires. Field emission characterization shows that the turn-on field for the nanowires grown on the thinner gold film is lower than those grown on the thicker gold film.  相似文献   

19.
Controllable synthesis of ZnO nanorod and prism arrays in a large area   总被引:1,自引:0,他引:1  
ZnO nanorod and nanoprism arrays have been directly synthesized on a large-area zinc substrate via a convenient solution method. The products were characterized with XRD, SEM, HRTEM, and photoluminescence (PL) spectroscopy. The influence of the solvent and the concentration of NaOH on the size and shapes of the as-prepared ZnO samples have been studied. It was found that ZnO nanorod or nanowire arrays were fabricated in alcohol, whereas ZnO nanoprisms with pyramid tips were produced in an alcohol-water mixture. The diameters of the nanorods or nanoprisms became thicker when a higher concentration of NaOH was used. Room-temperature PL spectra of the ZnO products showed a UV emission and a broad green band. The mechanism of the nanorods and nanoprisms in two systems is briefly discussed.  相似文献   

20.
Surfactants can direct the growth of gold nanoparticles to create anisotropic structures in high yield by simple means, yet the exact roles of surfactants and other reactants are not entirely understood. Here we show that one can exploit the geometrical dependence of the localized surface plasmon resonant extinction spectrum of gold nanorods to monitor their synthesis kinetics. By using quantitative measurements of nanorod extinction cross sections, Gans' theory for the spectral extinction of prolate spheroids can be normalized to provide values for the nanorod length and diameter from extinction spectra measured during growth. The nanorod length growth rate was first observed at 0.15 nm/s and decayed during the growth reaction. The rate dependence on nanorod size did not correspond to any simple reaction-limited or diffusion-limited growth mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号