首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An experimental investigation conducted in a high-speed plane cascade wind tunnel demonstrates that unsteady flow control by using synthetic (zero mass flux) vortex generator jets can effectively improve the aerodynamic performances and reduce (or eliminate) flow separation in axial compressor cascade. The Mach number of the incoming flow is up to 0.7 and most tested cases are at Ma = 0.3. The incidence is 10° at which the boundary layer is separated from 70% of the chord length. The roles of excitation frequency, amplitude, location and pitch angle are investigated. Preliminary results show that the excitation amplitude plays a very important role, the optimal excitation location is just upstream of the separation point, and the optimal pitch angle is 35°. The maximum relative reduction of loss coefficient is 22.8%.The project supported by the National Natural Science Foundation of China (10477002 and 50476003) and the Ph.D. Innovative Foundation of Beihang University. The English text was polished by Yunming Chen.  相似文献   

2.
The interaction of a particle-laden jet (ReUe=6600)(ReUe=6600) with a single synthetic jet or a continuous control jet located upstream of the main jet exit (i.e., within the main jet nozzle) was examined experimentally using PIV and PTV. A reduction technique was used to calculate 3-D flow fields from multiple 2-D measurement planes to study the complex 3-D interactions. The synthetic jet was shown to influence the particles both directly and indirectly through the manipulation of the carrier fluid’s drag force on the particles. The synthetic jet impulse directly vectors the particles away from the synthetic jet, while the formation of large vortical structures indirectly affects the particles, spreading throughout the measurement domain. By comparison, a continuous control jet only vectors the particles away from itself. The lowest Stokes number particles respond similarly to the carrier fluid, while higher Stokes number particles are less responsive to the control and only follow the strong vortical structures (i.e., higher circulation), which suggests that the preferential concentration concept depends on both the Stokes number as well as the strength of the coherent structures.  相似文献   

3.
Measurements were made in the near field of piston driven axisymmetric coaxial synthetic jets emanating from an orifice and a surrounding annulus of equal exit areas and cavity volumes. Piston velocity, amplitude, radial spacing between the orifice and the annulus, and exit angles had a strong influence on the dominant features of the flow. Flow visualization revealed three distinct topologies of the jet consisting of expanding, contracting and recirculating regions and doubling of the number of foci inside of the cavity compared to jet from the orifice alone. The direction of the swirl/rotation imposed on the mean flow was also dependent on the direction of the rotation of dominant foci. Interaction between flow from the orifice and the annulus amplified the azimuthal instability of ring vortices due to the periodic axial stretching and compression of the streamwise vortex filaments. Bifurcation of ring vortices into elliptical lobes reported earlier [S.V. Gaimella, V.P. Schroeder, Local heat transfer distributions in confined multiple air impingement, ASME Journal of Electronic Packaging 123 (3) (2001) 165–172] for single cavity jet was also observed in the coaxial jet. The number of cellular structures however was considerably larger than the single jet case. Large excursions of the jets from the plane of symmetry were observed. Power spectra exhibited sub-harmonic distribution of energy due to coalescence of the vortices. Growth of jet width and decay of centerline velocity were strongly influenced by the spacing and forcing frequency.  相似文献   

4.
Despite the proven capability of synthetic-jet actuators in delaying boundary-layer separation in laboratory experiments, a capability that allows the geometry and operating conditions of these devices to be designed and selected for maximum flow-control effectiveness in full-scale flight conditions has yet to be developed. In this two-part paper, the key results obtained during a 3-year research programme aiming at establishing such a capability based on a better understanding of the fluid mechanics of synthetic jets and an improved modelling capacity are reported. In Part 1 of this paper, the experimental studies of the behaviour of synthetic jets in both quiescent flow and a boundary layer are described. The work has led to an improved understanding of the dimensionless parameters that determine the formation and development of vortex rollup and how the strength of rollup can be enhanced by optimizing the geometry and operating condition. Based on the study of the nature of vortical structures produced as the result of the interaction with a boundary layer and their impact in the near-wall region where flow control is desired, the conditions for producing effective vortical structures for delaying flow separation were established. The finding from this work forms the basis of a number of criteria used for designing synthetic jet actuators for full-scale flight condition to be presented in Part 2.  相似文献   

5.
An innovative method is presented for control of an oscillatory turbulent jet in a thin rectangular cavity with a thickness to width ratio of 0.16. Jet flow control is achieved by mass injection of a secondary jet into the region above the submerged primary jet nozzle exit and perpendicular to the primary nozzle axis. An experimental model, a 2-D and a 3-D computational fluid dynamics (CFD) model are used to investigate the flow characteristics under various secondary injection mass flow rates and injection positions. Two-dimensional laser Doppler anemometry (LDA) measurements are compared with results from the CFD models, which incorporate a standard kε turbulence model or a 2-D and 3-D realisable kε model. Experimental results show deflection angles up to 23.3° for 24.6% of relative secondary mass flow are possible. The key to high jet control sensitivity is found to be lateral jet momentum with the optimum injection position at 12% of cavity width (31.6% of the primary nozzle length) above the primary nozzle exit. CFD results also show that a standard kε turbulence closure with nonequilibrium wall functions provides the best predictions of the flow.  相似文献   

6.
Large scale experiments (50 m3) have been carried out on the initiation of detonation by means of a jet of hot combustion products. The effects of hydrogen concentration (18–30% vol.), jet orifice diameter (100–400 mm), and the mixture composition in constant volume explosion chamber (25–50%) were investigated. Both high enough hydrogen concentration and large enough jet size are necessary for detonation initiation. The minimum values are within the ranges of 20 to 25% vol. H2, and of 100 to 200 mm correspondingly. A minimum ratio of jet size and mixture cell width 12–13 is required for detonation initiation.  相似文献   

7.
The present paper investigates the dynamics of a laminar plane jet impinging on a flat plate in a channel. An experimental parametric study is carried out to determine the flow regimes at different levels of confinement and Reynolds numbers. For very confined jets, the flow is steady whatever the Reynolds number. The overall structure of the flow is symmetric with respect to the jet axis and is characterized by the presence of recirculation zones at the channel walls. The dynamics is radically different for less confined jets. Above a critical Reynolds number, the flow bifurcates in the form of an oscillating flapping mode of the impinging jet. Analyses of the experimental results provide with a quantitative characterization of this regime in terms of amplitude, wavelength and frequency. This self-oscillating bifurcated flow induces strong sweepings of the target plate by the jet and intense vortex dipole ejections from the impacted wall. Such a regime is expected to be particularly useful in the enhancement of the local heat transfer at relatively low cost in terms of flow rate.  相似文献   

8.
Two- and three-dimensional spatial direct numerical simulations of a compressible plane jet exhausting into a parallel stream are described. These simulations reveal the inadequacy of a two-dimensional model in capturing the totality of the flow physics. In two dimensions, instabilities evolve into highly organized large-scale mixing events; two-dimensional time-averaged turbulence quantities also suffer from artificial vortex organization. Mean normal velocity profiles show a significant reduction in entrainment with increased compressibility, while the effect is much less pronounced in three dimensions. While streamwise and spanwise turbulence intensities exhibit no change with increased compressibility, normal intensity and shear stress are significantly reduced.  相似文献   

9.
A large eddy simulation (LES) is performed for two subsonic jets with a Reynolds number of Re = 105, which have different core temperatures, i.e., the cold and hot jet. The far-field overall sound pressure levels (OASPL) and noise spectra are well validated against previous exper-imental results. It is found that the OASPL is raised by heating at shallow angles. The most energetic coherent struc-tures are extracted with specified frequencies using the filter based on the frequency domain variant of the snapshot method of proper orthogonal decomposition (POD). The m = 0, 1 modes have high coherence of near-field pres-sure for both jets, while the coherence of m = 0 modes is enhanced greatly by heating. Based on the coherent struc-tures, spatial wavepackets are educed and the characteristics of growth, saturation and decay are analyzed and compared between the two jets in detail. The results show that heat-ing would enhance the linear growth rate for high frequency components, and nonlinear growth rates for low frequency components in general, which are responsible for higher OASPL in the hot jet. The far-field sound generated by wavepackets is computed using the Kirchhoff extrapolation, which matches well with that of LES at shallow angles. This indicates that the wavepackets associated with coherent structures are dominant sound sources in forced transitional turbulent jets. Additionally, the present POD method is proven to be a robust tool to extract the salient features of the wavepackets in turbulent flows.  相似文献   

10.
11.
Flow stability analysis and excitation using pulsating jets   总被引:1,自引:0,他引:1  
Classical flow stability applied to transition from laminar to turbulent flow may also describe the behavior of vorticity fluctuations created by a pulsating jet placed along a solid boundary. A numerical laminar flow experiment involving a pulsating jet placed along the surface of a duct with flow separation downstream, resulted in eliminating most part of the separated flow region. Applying the same approach to a turbulent flow, it was possible to develop a turbulent stability flow formulation and apply successfully turbulent pulsating jet flow separation control. To cite this article: D. Skamnakis, K. Papailiou, C. R. Mecanique 333 (2005).  相似文献   

12.
Experimental study of an impinging jet with different swirl rates   总被引:1,自引:0,他引:1  
A stereo PIV technique using advanced pre- and post-processing algorithms is implemented for the experimental study of the local structure of turbulent swirling impinging jets. The main emphasis of the present work is the analysis of the influence of swirl rate on the flow structure. During measurements, the Reynolds number was 8900, the nozzle-to-plate distance was equal to three nozzle diameters and the swirl rate was varied from 0 to 1.0. For the studied flows, spatial distributions of the mean velocity and statistical moments (including triple moments) of turbulent pulsations were measured.

The influence of the PIV finite spatial resolution on the measured dissipation rate and velocity moments was analyzed and compared with theoretical predictions. For this purpose, a special series of 2D PIV measurements was carried out with vector spacing up to several Kolmogorov lengthscales.

All terms of the axial mean momentum and the turbulent kinetic energy budget equations were obtained for the cross-section located one nozzle diameter from the impinging plate. For the TKE budget, the dissipation term was directly calculated from the instantaneous velocity fields, thereby allowing the pressure diffusion term to be found as a residual one. It was found that the magnitude of pressure diffusion decreased with the growth of the swirl rate. In general, the studied swirling impinging jets had a greater spread rate and a more rapid decay in absolute velocity when compared to the non-swirling jet.  相似文献   


13.
14.
Although the finite-element (FE) method has been successful in analysing complex laminar flows, a number of difficulties can arise when two-equation turbulence models (e.g. the k-? model) are incorporated. This work describes a particular FE discretization of the k-? model and reports its performance in recirculating flow. Severe problems encountered in attempts to obtain convergence of the numerical scheme are isolated and analysed, and methods by which the problems can be overcome are suggested. Insight gained in this work has enabled a practical turbulent flow FE code to be constructed which is robust and efficient. This code is the subject of a further paper.  相似文献   

15.
In the present study, the effects of a directed co-flow on the process of mixture jet with variable density have been investigated numerically. Three density ratios were considered namely R=0.55, 1.5 and 1.52, respectively, for binary mixtures methane-air, carbon dioxide-air and propane-air. The directed co-flow preserves its axial symmetry at the inlet and its direction varies between +20° and –20°. In addition, the k – model and model equation of the algebraic non-equal scales are used to investigate effects of the variable density in axisymmetric turbulent jet. Comparative studies are presented in the case of the calculations of the average variables such as the longitudinal velocity, species concentration and the turbulent kinetic energy. The results obtained indicate that the directed co-flow with positive angles enhances considerably the mixing.  相似文献   

16.
17.
18.
A turbulent axisymmetric air jet impinging on a square cylinder mounted on a flat plate has been studied experimentally. Turbulence statistics and flow’s topology were investigated. When the surface was heated through uniform heat flux, local heat transfer coefficient was measured. The jet from a long round pipe, 75 pipe diameters (D) in length, at Reynolds number of 23,000, impinged vertically on the square cylinder (3D × 3D × 43D). Measurements were performed using particle image velocimetry, flow visualization using fluorescent dye and infrared thermography. The flow’s topology demonstrated a three-dimensional recirculation after separating from the square cylinder and a presence of foci between the bottom corner and the recirculation’s detachment line. The distribution of heat transfer coefficient was explained by the influence of these flow’s structures and the advection of kinetic energy. On the impingement wall of the square cylinder, a secondary peak in heat transfer coefficient was observed. Its origin can be attributed to very pronounced shear production coupled with the external turbulence coming from the free jet.  相似文献   

19.
In this work, a microjet arrangement to control a turbulent jet is studied by means of direct numerical simulation. A customised numerical strategy was developed to investigate the interactions between the microjets and the turbulent jet. This approach is based on an improved immersed boundary method in order to reproduce realistically the control device while being compatible with the accuracy and the parallel strategy of the in-house code Incompact3d. The 16 converging microjets, so-called fluidevrons, lead to an increase of the turbulent kinetic energy in the near-nozzle region through an excitation at small scale caused by the interaction between the fluidevrons and the main jet. As a consequence, very intense unstable ejections are produced from the centre of the jet toward its surrounding. Further downstream, the turbulent kinetic energy levels are lower with a lengthening of the potential core compared to a natural jet, in agreement with experimental results.  相似文献   

20.
    
The relative wall-normal displacement of the origin perceived by different components of near-wall turbulence is known to produce a change in drag. This effect is produced for instance by drag-reducing surfaces of small texture-size like riblets and superhydrophobic surfaces. To facilitate the research on how these displacements alter near-wall turbulence, this paper studies different strategies to model such displacement effect through manipulated boundary conditions. Previous research has considered the effect of offsetting the virtual origins perceived by the tangential components of the velocity from the reference, boundary plane, where the wall-normal velocity was set to zero. These virtual origins are typically characterised by slip-length coefficients in Robin, slip-like boundary conditions. In this paper, we extend this idea and explore several techniques to define and implement virtual origins for all three velocity components on direct numerical simulations (DNSs) of channel flows, with special emphasis on the wall-normal velocity. The aim of this work is to provide a suitable foundation to extend the existing understanding on how these virtual origins affect the near-wall turbulence, and ultimately aid in the formulation of simplified models that capture the effect of complex surfaces on the overlying flow and on drag, without the need to resolve fully the turbulence and the surface texture. From the techniques tested, Robin boundary conditions for all three velocities are found to be the most satisfactory method to impose virtual origins, relating the velocity components to their respective wall-normal gradients linearly. Our results suggest that the effect of virtual origins on the flow, and hence the change in drag that they produce, can be reduced to an offset between the virtual origin perceived by the mean flow and that perceived by the overlying turbulence, and that turbulence remains otherwise smooth-wall-like, as proposed by Luchini (1996). The origin for turbulence, however, would not be set by the spanwise virtual origin alone, but by a combination of the spanwise and wall-normal origins. These observations suggest the need for an extension of Luchini’s virtual-origin theory to predict the change in drag, accounting for the wall-normal transpiration when its effect is not negligible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号