首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 507 毫秒
1.
一维流体饱和粘弹性多孔介质层的动力响应   总被引:3,自引:1,他引:2  
杨骁  张燕 《力学季刊》2005,26(1):44-52
本文研究了不可压流体饱和粘弹性多孔介质层的一维动力响应问题。基于粘弹性理论和多孔介质理论,在流相和固相微观不可压、固相骨架服从粘弹性积分型本构关系和小变形的假定下,建立了不可压流体饱和粘弹性多孔介质层一维动力响应的数学模型,利用Laplace变换,求得了原初边值问题在变换空间中的解析解,并利用Laplace逆变换的Crump数值反演方法,得到原动力响应问题的数值解。数值研究了饱和标准线性粘弹性多孔介质层的动力响应,分析了固相位移、渗流速度、孔隙压力及固相有效应力等的响应特征。结果表明,与不可压流体饱和弹性多孔介质相同,不可压流体饱和粘弹性多孔介质中亦只存在一个纵波,并且固相骨架的粘性对动力行为有显著的影响。  相似文献   

2.
基于多孔介质混合物理论,用解析的方法研究了不可压饱和土地基受到简谐荷载作用下的动力响应问题。利用Fourier积分变换求解耦合方程组,得到了二维饱和土介质在简谐荷载作用下的通解。针对表面透水的具有下卧基岩的饱和土层以及半无限饱和土地基的边界条件,获得了固体骨架位移、孔隙流体位移、固体骨架有效应力以及孔隙流体压力的积分形式解答,并通过数值算例分析了饱和土地基在简谐荷载作用下的响应。  相似文献   

3.
海洋地震工程流固耦合问题统一计算框架   总被引:10,自引:8,他引:2  
海底地震动的模拟以及海洋工程结构的地震反应分析中,涉及到海水、饱和海床、弹性基岩、结构之间的相互耦合.传统的方法分别采用声波方程描述理想流体、Biot方程描述饱和海床、弹性波方程描述基岩和结构,分别考虑相互之间的耦合,十分不便.本文基于理想流体、固体分别为饱和多孔介质的特殊情形(孔隙率分别为1和0),由饱和多孔介质的Biot方程可退化得到理想流体的声波方程和固体的弹性波方程.然后,以饱和多孔介质方程为基础,经集中质量有限元离散,考虑不同孔隙率的饱和多孔介质之间耦合的一般情形,建立了该耦合情形的求解方法.进一步论证了该一般情形的耦合计算方法可分别退化到流体与固体、流体与饱和多孔介质、固体与饱和多孔介质之间的耦合计算,从而将流体、固体、饱和多孔介质间的耦合问题纳入到统一计算框架,并编制了相应的三维并行分析程序.以P-SV波垂直入射时,半无限层状海水-饱和海床、海水-弹性基岩、海水-饱和海床-弹性基岩三种情形的动力分析为例,采用统一计算框架结合透射边界条件进行求解,并与传递矩阵方法得到的解进行对比,验证了该统一计算框架的有效性以及并行计算的可行性.   相似文献   

4.
The main focus of this work is to model macroscopically the effects of partial saturation upon the permeability of dual scale fibrous media made of fiber bundles when a Newtonian viscous fluid impregnates it. A new phenomenological model is proposed to explain the discrepancies between experimental pressure results and analytical predictions based on Darcy's law. This model incorporates the essential features of relative permeability but without the necessity of measuring saturation of the liquid for its prediction. The model is very relevant for the small scale industrial systems where a liquid is forced to flow through a fibrous porous medium. It requires four parameters. Two of them are the two permeability values based on the two length scales. One length scale is of the order of magnitude of the individual fiber radius and corresponds to the permeability of the completely staurated medium, the other is of the order of magnitude of the distance between the fiber bundles and corresponds to the permeability of the partially saturated medium. The other two parameters are the lengths of the two partially saturated regions of the flow domain. The two lengths of the partially saturated region and the permeability of the fully saturated flow domain can be directly measured from the experiments. The excellent agreement between the model and the experimental results of inlet pressure profile with respect to time suggests that this model may be used to describe the variation of the permeability behind a moving front in such porous media for correct pressure prediction. It may also be used to characterize the fibrous medium by determining the two different permeabilities and the relative importance of the unsaturated portion of the flow domain for a given architecture.  相似文献   

5.
陈少林  程书林  柯小飞 《力学学报》2019,51(5):1517-1529
海底地震动场及海洋声场的模拟中,需要考虑复杂海床介质及海底地形的影响,涉及到海水、饱和海床、弹性基岩之间的相互耦合.传统的方法分别采用声波方程描述理想流体、Biot方程描述饱和海床、弹性波方程描述基岩,分别进行空间离散和界面耦合, 十分不便.本文基于理想流体、固体分别为饱和多孔介质的特殊情形(孔隙率分别为1和0),由饱和多孔介质的Biot方程可退化得到理想流体的声波方程和固体的弹性波方程.然后, 以饱和多孔介质方程为基础, 经集中质量有限元离散,严格考虑不同孔隙率的饱和多孔介质在不规则界面的耦合条件,通过求解法向和切向界面力的途径,建立了不同孔隙率的饱和多孔介质耦合情形的求解方法,将流体、固体、饱和多孔介质间的耦合问题纳入到统一计算框架,并编制了相应的三维并行分析程序.考虑海水--弹性基岩、海水--饱和海床--弹性基岩体系中凹陷地形情形,采用本文提出的统一计算框架, 结合透射边界条件,分析了P波入射时的动力反应, 并通过结果是否满足界面条件,验证了该统一计算框架的有效性以及并行计算的可行性.   相似文献   

6.
Within the general framework of mixture theory and by introducing the fictitious “fluid phase” as a mixture of a liquid and a gas, the conditions for localization of deformation into a shear band in the incremental response of partially saturated and fully saturated elastic–plastic porous media under undrained conditions are derived. The effect of porosity is included in the derivation. The explicit analytical expressions of the direction of shear band initiation and the corresponding hardening modulus of the porous media for the plane strain case are deduced, and a parametric analysis is made of the influence of the porosity on the properties of strain localization based on Mohr–Coulomb yield criterion. It is found that the dependence of the shear banding properties of partially saturated porous media on the porosity is related to the stress states and Poisson's ratio. However, the properties of the strain localization for the fully saturated porous media are almost independent of Poisson's ratio. Finally, on the basis of Mohr–Coulomb yield criterion, some solutions of the shear banding orientation for water-saturated granular materials are obtained, which are proved to be in good agreement with the experimental results reported by other researchers.  相似文献   

7.
基于饱和多孔介质理论,在固相和液相微观不可压,固相骨架小变形且满足线性粘弹性积分型本构关系的假定下,建立了流体饱和粘弹性多孔介质动力响应的若干Gurtin型变分原理,包括Hu-Washizu变分原理.利用所建立的变分原理,导出了流体饱和粘弹性多孔介质动力响应无网格数值模拟的离散控制方程,此方程是一个关于时间的对称微分方程组,便于分析计算.作为数值例子,研究了流体饱和粘弹性多孔柱体的一维动力响应,数值结果揭示了流体饱和粘弹性多孔柱体中波的传播特性以及固相粘性的影响.  相似文献   

8.
The momentum and heat transfer characteristics associated with the boundary layer on a continuous moving flat surface in a non-Darcian fluid have been investigated exploiting a local similarity solution procedure. The full boundary layer equations, which describe the effects of convective inertia, solid boundary, and porous inertia in addition to the Darcy flow resistance, were solved using novel transformed variables, deduced from a scale analysis on the momentum and energy conservation equations. Details are provided for the effects of convective inertia and porous inertia on the velocity and temperature profiles. The resulting friction and heat transfer characteristics are found to be substantially different from those of forces convection over a stationary flat plate. Furthermore, useful asymptotic expressions for the local Nusselt number are presented in consideration of possible physical limiting conditions.  相似文献   

9.
 Fluid flow at the interface of a porous medium and an open channel is the governing phenomenon in a number of processes of industrial importance. Traditionally, this has been modeled by applying the Brinkman’s modification of Darcy’s law to obtain the velocity profile in terms of an additional parameter known as the “apparent viscosity” or the “slip coefficient”. To test this ad hoc approach, a detailed experimental investigation of the flow was conducted using Laser Doppler Anemometry (LDA) in the close vicinity of the permeable boundary of a porous medium. The porous medium used in the experiments consisted of a network of continuous glass strands woven together in a random fashion. A Hele–Shaw cell was partially filled with a fibrous preform such that an open channel flow is coupled with the Darcy flow inside the preform through the permeable interface of the preform. The open channel portion of the Hele–Shaw cell also acts as an ideal porous medium of known in-plane permeability which is much higher than the permeability of the fibrous porous medium. A viscous fluid is injected at a constant flow rate through the above arrangement and a saturated and steady flow is established through the cell. Using LDA, steady state velocity profiles are accurately measured by traversing across the cell in the direction perpendicular to the flow. A series of experiments were conducted in which fluid viscosity, flow rate, solid volume fraction of the porous medium and depth of the Hele–Shaw cell were varied. For each and every case in which the conditions for Hele–Shaw approximation were valid, the depth of the boundary layer zone or the screening length inside the fibrous preform was found to be of the order of the channel depth. This is much larger as compared to the Brinkman’s prediction of the screening length which is of the order of √K, where K is the permeability of the fibrous porous medium. Based on this finding, we modified the boundary condition in the Brinkman’s solution and found that the velocity profile results compared well with the experimental data for the planar geometry and the fibrous preforms for volume fractions of 7%, 14% and 21% for Hele–Shaw cell depths of 1.6 and 3.175 mm. For a cell depth of 4.8 cm, in which the Hele–Shaw approximation was not valid, the boundary layer thickness or the screening length was found to be less than the mold or channel depth but was still much larger than the Brinkman’s prediction. Received: 10 May 1996 / Accepted: 26 August 1996  相似文献   

10.
In order to find applicable treatments of moving boundary conditions based on the lattice Boltzmann method in flow acoustic problems, three bounce‐back (BB) methods and four kinds of immersed boundary (IB) methods are compared. We focused on fluid–solid boundary conditions for flow acoustic problems especially the simulations of sound waves from moving boundaries. BB methods include link bounce‐back, interpolation bounce‐back and unified interpolation bounce‐back methods. Five IB methods are explicit and implicit direct‐forcing (Explicit‐IB and Implicit‐IB), two kinds of partially saturated computational methods and ghost fluid method. In order to reduce the spurious pressure generated by the fresh grid node changing from solid domain to fluid domain for BB methods and sharp IB methods, we proposed two new kinds of treatments and compared them with two existing ones. Simulations of the benchmark problems prove that the local evolutionary iteration (LI) is the best one in treatments of the fresh nodes. In addition, for standing boundary problems, although BB methods have a little higher accuracy, all the methods have similar accuracy. However, for moving boundary problems, IB methods are more appropriate than BB methods, because IB methods' smooth interpolation of pressure eld produces less disturbing spurious pressure waves. With improved treatments of fresh nodes, BB methods are also acceptable for moving boundary acoustic problems. In comparative tests in respective type, unified interpolation bounce‐back with LI, Implicit‐IB, and ghost fluid with LI are the best choices. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
 A boundary layer analysis has been presented for interaction of combined convection from vertical surface in a porous medium saturated with a power-low type non-Newtonian fluid with presence suction and injection. The transformed conservation laws are solved numerically for the case of variable surface heat flux conditions. Results for the details of the velocity and temperature fields as well as the Nusselt number have been presented. The effect of fluid suction/injection on the heat transfer rate is discussed. Received on 21 December 1999  相似文献   

12.
This paper analyses the material instability of fully saturated multiphase porous media. On account of the fact that anisotropic mechanical behaviours are widely observed in saturated and partially saturated geomaterials, the anisotropic constitutive model developed by Rudnicki for geomaterials is used to model the anisotropic mechanical behaviour of the solid skeleton of saturated porous geomaterials in axisymmetric compression test. The inertial coupling effect between solid skeleton and pore fluid is also taken into account in dynamic cases. Conditions for static instability (strain localisation) and dynamic instability (stationary discontinuity and flutter instability) of fully saturated porous media are derived. The critical modulus, shear band angle for strain localisation, and the bound within which flutter instability may occur are given in explicit forms. The effects of material parameters on material instability are investigated in detail by numerical computations.  相似文献   

13.
High-Velocity Laminar and Turbulent Flow in Porous Media   总被引:1,自引:0,他引:1  
We model high-velocity flow in porous media with the multiple scale homogenization technique and basic fluid mechanics. Momentum and mechanical energy theorems are derived. In idealized porous media inviscid irrotational flow in the pores and wall boundary layers give a pressure loss with a power of 3/2 in average velocity. This model has support from flow in simple model media. In complex media the flow separates from the solid surface. Pressure loss effects of flow separation, wall and free shear layers, pressure drag, flow tube velocity and developing flow are discussed by using phenomenological arguments. We propose that the square pressure loss in the laminar Forchheimer equation is caused by development of strong localized dissipation zones around flow separation, that is, in the viscous boundary layer in triple decks. For turbulent flow, the resulting pressure loss due to average dissipation is a power 2 term in velocity.  相似文献   

14.
多孔饱和半空间上刚体垂直振动的轴对称混合边值问题   总被引:10,自引:2,他引:10  
金波  徐植信 《力学学报》1997,29(6):711-719
研究圆柱形刚体在多孔饱和半空间上的垂直振动.首先应用Hankel变换求解多孔饱和固体的动力基本方程———Biot波动方程.然后按混合边值条件建立多孔饱和半空间上刚体垂直振动的对偶积分方程,用Abel变换化对偶积分方程为第二类Fredholm积分方程.文末给出了多孔饱和半空间表面动力柔度系数的计算曲线.  相似文献   

15.
16.
Heat source function method is adopted in the present paper to derive elementary solutions of coupled thermo-hydro-mechanical consolidation for saturated porous media under conjunct actions of instantaneous point heat source, instantaneous point fluid source and constant volume force. By using the so-called fictitious heat source method and images method, the solutions of a semi-infinite saturated porous medium subjected to a local heat source with time-varied intensity on its free surface are developed from elementary solutions. The numerical integral methods for calculating the unsteady temperature, pore pressure and displacement fields are given. The thermomechanical response are analyzed for the case of a circular planar heat source. Besides, the thermal consolidation characteristics of a saturated porous medium subjected to a harmonic thermal loading are also given, and the fluctuation processes of the field variables located below the center of heat source are analyzed. The project supported by the National Natural Science Foundation of China (50578008) The English text was polished byYunming Chen.  相似文献   

17.
This research addresses the investigation of an elastic wave field in a homogeneous and isotropic porous medium which is fully saturated by a Newtonian viscous fluid. A new methodology is developed for describing the wave field in the medium excited by multiple energy sources. To quantify the relative displacements between the fluid and solid of the medium, the governing equations of the elastic wave propagation are derived in the form of displacements specially. The velocities and attenuation of the waves are considered as functions of viscosity and frequency. Making use of the Hankel function and the moving-coordinate method, a model of the wave motion with multiple cylindrical wave sources is built. Making use of the model established in this research, the relative displacement between the fluid and the solid can be quantified, and the wave field in the porous media can then be determined with the given energy sources. Numerical simulations of cylindrical waves from multiple energy sources propagating in the porous medium saturated by viscous fluid are performed for demonstrating the practicability of the model developed.  相似文献   

18.
This paper is concerned with the thermal non-equilibrium free convection boundary layer, which is induced by a vertical heated plate embedded in a saturated porous medium. The effect of suction or injection on the free convection boundary layer is also studied. The plate is assumed to have a linear temperature distribution, which yields a boundary layer of constant thickness. On assuming Darcy flow, similarity solutions are obtained for governing the steady laminar boundary layer equations. The reduced Nusselt numbers for both the solid and fluid phases are calculated for a wide range of parameters, and compared with asymptotic analyses.  相似文献   

19.
A general approach is proposed for defining the macroscopic free energy density function (and its complement, the free enthalpy) of a saturated porous medium submitted to finite deformations under non-isothermal conditions, in the case of compressible fluid and solid constituents. Reference is made to an elementary volume treated as an ‘open system’, moving with the solid skeleton. The proposed free energy depends on the generalised strains (namely an appropriate measure of the strain of the solid skeleton and the variation in fluid mass content) and the absolute temperatures of the solid and fluid phases (which are assumed to differ from each other for the sake of generality). This macroscopic energy proves to be a potential for the generalised stresses (namely the associated measure of the total stress and the free enthalpy of the pore fluid per unit mass) and the entropies of the solid and fluid phases. In contrast with mixture theories, the resulting free energy is not the simple sum of the free energies of the single constituents. Two simplified cases are examined in detail, i.e. the semilinear theory (originally proposed for isothermal conditions and extended here to non-isothermal problems) and the linear theory. The proposed approach paves the way to the consistent non-isothermal-hyperelastic-plastic modelling of saturated porous media with a compressible fluid and solid constituents.  相似文献   

20.
何录武  张玉柱  杨骁 《力学季刊》2007,28(3):431-435
基于多孔介质理论,在固相骨架和孔隙流体微观不可压,固相骨架小变形且满足线性粘弹性积分型本构关系的假定下,利用卷积积分的性质,本文首先建立了以固相骨架位移、孔隙流体相对速度和孔隙流体压力为宗量的流体饱和粘弹性多孔介质固结问题的一个Gurtin型变分原理.其次,利用Lagrange乘子法解除相关的变分约束条件,建立了流体饱和粘弹性多孔介质固结问题的若干广义Gurtin型变分原理,包括第三类的Hu-Washizu型变分原理.最后,简单讨论了等价初边值问题的相应变分原理.这些Gurtin型变分原理的建立不仅丰富了饱和粘弹性多孔介质的相关理论,而且为相关数值模拟方法,如有限元法、无网格法等的建立奠定了理论基础.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号