共查询到20条相似文献,搜索用时 15 毫秒
1.
现实生活中绝大数系统都是非线性的,BP神经网络通过训练能否达到局部最优值、能否收敛以及训练的时间长短与初始值和阈值的选取关系密切.为此采用了具有动态惯性权重的粒子群算法对BP神经网络初始值进行优化.实验表明具有动态惯性权重的粒子群算法优化BP神经网络预测误差很小,能够跳出局部极小值,得到更优的结果. 相似文献
2.
研究了基于粒子群算法的BP神经网络优化问题,将改进的粒子群优化算法用于BP神经网络的学习训练,并与传统的BP网络进行了比较.结果表明,将改进粒子群优化算法用于BP神经网络优化,不仅能更快地收敛于最优解,而且很大程度地提高了结果的精度. 相似文献
3.
为提高心理压力的识别率,提出一种改进的粒子群优化BP(back propagation)神经网络的压力识别算法。该算法在基本粒子群(particle swarm optimization,PSO)模型的基础上,引入了收缩因子,在收缩因子的作用下,使速度的边界限制消失,选取适当的参数来保证PSO算法的有界和收敛特性,实现对BP神经网络的优化。利用心算任务进行压力诱发,采集高压、低压状态下的心电信号,提取了与心理压力相关的心率变异性特征值,并对特征数据对比分析;建立了心理压力程度的分类模型,通过改进的PSO模型优化BP神经网络以识别心理压力。结果表明:改进的粒子群优化BP神经网络算法与BP神经网络相比收敛速度快、误差小且识别率高,该算法对心理压力的识别率可达94.83%,识别效果优于未优化的BP神经网络算法。 相似文献
4.
针对前馈神经网络预测粮食产量的方法易陷入局部最优的问题,提出一种基于粒子群算法和人工蜂群算法的改进BP神经网络模型.利用粒子群优化算法和人工蜂群算法在全局搜索能力上的不同优势,结合两者对BP神经网络的权值和阈值进一步优化,以提升粮食产量预测模型的准确性与鲁棒性.给出基于粒子群和人工蜂群混合的ABPSO算法的具体实现,并选择1979年至2012年我国粮食的产量及影响其产量的8项因素作为数据集进行试验.结果表明:改进的BP神经网络能够较好地预测国内近几年的粮食产量变化趋势;相比未优化的BP模型,新算法预测误差平均值由847 780 t降低至240 320 t,误差范围由1 894 200 t降低至586 800 t. 相似文献
5.
改进量子粒子群优化算法的神经网络模型负荷预测 总被引:1,自引:0,他引:1
《西北大学学报(自然科学版)》2016,(5):639-644
提出一种基于Levy飞行的量子粒子群优化算法并用于小波神经网络的训练,该算法采用基于Levy分布的飞行策略扩大粒子的搜索空间,使粒子易于逃离局部最优点。该算法克服了传统算法在神经网络训练过程中易于陷入局部最优、收敛速度慢等缺点,提高了神经网络的泛化能力。最后将改进的量子粒子群优化算法训练小波神经网络应用于电力系统负荷预测的模型,仿真结果表明改进的量子粒子群优化算法在神经网络训练上具有更高的预测精度。 相似文献
6.
针对废水处理过程BP神经网络软测量模型受处理过程非线性特征影响,存在收敛速度慢、陷入局部极小点等问题,用改进的粒子群算法(PSO)优化BP神经网络,建立废水处理过程中出水化学需氧量(CODeff)与出水固体悬浮物(SSeff)的软测量模型(PSO-BP模型),并与基于遗传算法-BP神经网络算法的模型(GA-BP模型)及... 相似文献
7.
针对拥有庞大数据量的全息图再现像质量不理想的问题, 提出一种针对粒子群优化算法(PSO: Particle Swarm Optimization)中学习因子和惯性权值进行动态调整的方法, 将改进后的算法与反向传播(BP: Back Propagation)神经网络相融合形成改进型粒子群优化BP 神经网络(MPSO-BP: Modified Particle Swarm Optimizing
BP Neural Network)并用于全息图压缩。通过与BP 神经网络和粒子群优化BP 神经网络(PSO-BP: Particle Swarm Optimizing BP Neural Network)压缩算法进行对比, 证明了该网络压缩算法在保持较好的压缩效率时得到的全息图再现像质量更好。 相似文献
8.
为了改善反向传播(BP)神经网络算法过度依赖初始参数,导致网络收敛速度慢,容易陷入局部极小值的问题,提出利用改进的粒子群优化(IPSO)算法,对BP神经网络的参数进行优化,找出合适的初始权值和阈值。该文算法在基本粒子群优化(PSO)算法中增加了基于四分位数的选择策略,引入遗传算法的自适应变异概率作为扰动概率,加入基于个体自身适应度值与种群平均适应度值比值的自适应扰动策略。该文算法IPSO-BP对训练图像Lena、测试图像Cameraman和验证图像Peppers效果都有明显的提高,经过IPSO-BP训练的模型峰值信噪比(PSNR)和均方误差(MSE)明显好于惯性权重线性递减的粒子群优化-反向传播(LDWPSO-BP)、基于动态加速因子的粒子群优化-反向传播(PSO-DAC-BP)、基于正态分布衰减惯性权重的粒子群优化-反向传播(NDPSO-BP)、自适应变异粒子群优化-反向传播(ADVPSO-BP)、遗传算法-反向传播(GA-BP)以及天牛须搜索-反向传播(BAS-BP),PSNR在7种算法中最大,MSE在7种算法中最小。虽然IPSO-BP在图像Lena上的压缩率(CR)小于PSO-D... 相似文献
9.
《山西师范大学学报:自然科学版》2017,(1)
由于BP网络具有收敛速度慢和容易陷入局部极值,为了提高BP网络预测的准确性,本文提出了用粒子群(PSO)算法来优化BP网络,并进行非线性函数拟合.用PSO迭代算法找到最佳的网络权值和阈值,再以网络的正向传播的最小误差作为目标函数指导PSO的优化.将该算法与标准BP算法进行matlab仿真比较.实验结果表明,优化后的网络拟合误差小,效果更好. 相似文献
10.
根据灰色神经网络的参数随机选择类似于粒子群算法中的粒子初始空间位置,采用改进粒子群算法代替梯度修正法,对网络参数进行了处理,并通过寻找粒子群算法中的最优个体,建立了基于改进粒子群算法的灰色神经网络,提高了预测模型的稳健性和精度.通过解决短期订货量问题,与反向传播(BP)神经网络、灰色神经网络、没有改进的粒子群灰色神经网络算法和基于遗传算法的灰色神经网络等方法进行了比较.分析结果表明,基于改进粒子群算法的灰色神经网络计算更为方便,并具有更好的逼近能力和预测精度.为优化网络模型参数提供了一种新方法,并拓展了预测模型的研究思路. 相似文献
11.
基于粒子群优化的BP神经网络预测方法及其应用研究 总被引:1,自引:0,他引:1
本文提出了一种基于粒子群优化的BP神经网络预测方法.该方法利用粒子群优化算法全局搜索BP神经网络的权值和阈值,并利用优化后的BP网络建立预测模型对经济指标进行预测.仿真实验结果表明,该方法克服了传统BP神经网络本身所存在的局部最小值和训练速度慢等不足,能够较好应用于定量经济指标预测,有效提高了预测的精度. 相似文献
12.
马翔 《辽宁工程技术大学学报(自然科学版)》2010,29(5)
针对数据规模的扩大,重复记录检测效率往往不能进一步提升的问题,提出一种粒子群优化BP神经网络的重复记录检测方法,充分利用了神经网络的非线性映射和粒子群算法的全局优化特性。将基于学习的思想和进化的思想应用到重复记录检测中,避开了传统方法计算属性权重的问题。理论分析和实验表明:该方法不仅具有好的检测精度,而且具有很好的时间效率,能够有效地解决大数据量的相似重复记录检测问题。 相似文献
13.
《西安科技大学学报》2017,(6)
为解决常规PID控制难以在具有时变负载的自平衡系统中实时、精确调节负载的变化,在BP神经网络基础上,利用粒子群算法(PSO)优化BP神经网络,将神经网络的收敛速度进一步提高,并将算法应用到二轮平衡车控制系统中,对二轮平衡车进行动力学建模,介绍系统的结构、原理与实验方法,搭建二轮平衡车实验平台进行了施加突变负载情况下的试验验证。利用二轮平衡车实验平台车身上的姿态传感器得到车体倾斜输出角度,对比施加突变负载前后以及神经网络优化前后的车体倾斜输出角度变化。结果表明:粒子群算法(PSO)优化BP神经网络技术能够满足变负载二轮自平衡车控制的要求,实现了自平衡车的动态自平衡,提高了抗干扰能力,验证了优化算法在自平衡、抗外部干扰和缩短调整时间上的优势。 相似文献
14.
于志奇 《太原师范学院学报(自然科学版)》2011,10(2):74-76,115
粒子群优化算法在众多的优化问题上表现出良好的性能,已广泛应用于很多领域,但存在早熟收敛的问题,粒子极易陷入局部最优解.从提高收敛速度等方面对算法改进进行研究,并通过仿真实验证明改进算法的可行性,一定程度上提高了算法的性能. 相似文献
15.
提出了两种改进的粒子群优化算法--引入了"预筛选"机制的PSPS0和线性改变最大速度vmax的LCVPSO,仿真实验表明,PSPSO和LCVPSO比标准PSO算法具有更好的性能. 相似文献
16.
神经网络识别能力的优劣是由网络结构和权值共同确定的.本文设计一种粒子群编码方式,实现神经网络结构和权值同时优化,并采用目标函数正则化的方式,使神经网络的学习能力和识别能力相结合,同时,设计出一种动态协同粒子寻优方式,在兼顾基本粒子群算法全局收敛的快速性的基础上,加强局部搜索的开发性,有效提高了算法寻优效率.将该模型应用到UCI标准数据集进行仿真实验,实验结果验证了本文方法可以提高神经网络的学习和识别能力. 相似文献
17.
在分析粒子群参数特征的基础上,提出自适应粒子群优化算法,使用自适应粒子群优化BP神经网络,建立基于自适应粒子群优化BP神经网络(PSO-BP)的变压器故障诊断系统.通过对52组训练样本和28组测试样本的仿真实验,可知自适应PSO-BP法能提高变压器故障诊断的准确率,有效减小网络的误差精度. 相似文献
18.
针对带有有界随机扰动和概率约束的非线性模型预测控制的优化控律求解问题.采用引入粒子滤波重采样步骤改进的粒子群算法,并与粒子的变异操作相结合来求解非线性模型预测控制优化控制律的方法,提高了算法的收敛速度和控制效果.对概率约束的处理,采用对不满足约束的粒子进行有效替代的方法,进而得到满足概率约束条件的优化控制律.仿真结果表明了提出的改进粒子群算法用于优化求解非线性模型预测控制的优化控制律的可行性和有效性. 相似文献
19.
为解决BP神经网络拟合非线性函数的预测结果误差较大问题,笔者将标准粒子群算法进行改进,形成基于免疫接种的粒子群算法(IPSO);然后将该算法与BP神经网络理论相结合,实现基于IPSO算法优化的BP神经网络非线性函数拟合算法。新的拟合算法首先确定BP神经网络结构,然后用IPSO算法优化初始权值和阈值,最后进行BP神经网络预测。数值实验表明,本文提出的IPSO算法提高了BP神经网络的拟合能力,减小了拟合误差,提高了拟合精度。 相似文献
20.
乔维德 《厦门理工学院学报》2021,29(5):8-13
针对滚动轴承故障诊断方法存在的局限性及缺陷,在利用小波分析提取滚动轴承故障信号特征向量基础上,提出基于粒子群 蛙跳算法优化的BP神经网络滚动轴承故障诊断方法。该方法采用粒子群 蛙跳算法优化BP神经网络结构参数,利用改进BP算法和样本数据训练BP神经网络,实现滚动轴承运行正常和4种不同故障状态的诊断。实验验证结果表明,基于粒子群 蛙跳算法的BP神经网络方法诊断误差最大值仅为005,为未优化的神经网络诊断误差的1/16;与其他算法相比,基于粒子群 蛙跳算法优化的BP神经网络方法的训练时间、训练误差和诊断精度各项指标均为最优,可实现滚动轴承故障的快速、准确、有效诊断。 相似文献