首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A detailed structural and thermodynamic study of a series of cobalt-hydride complexes is reported. This includes structural studies of [H(2)Co(dppe)(2)](+), HCo(dppe)(2), [HCo(dppe)(2)(CH(3)CN)](+), and [Co(dppe)(2)(CH(3)CN)](2+), where dppe = bis(diphenylphosphino)ethane. Equilibrium measurements are reported for one hydride- and two proton-transfer reactions. These measurements and the determinations of various electrochemical potentials were used to determine 11 of 12 possible homolytic and heterolytic solution Co-H bond dissociation free energies of [H(2)Co(dppe)(2)](+) and its monohydride derivatives. These values provide a useful framework for understanding observed and potential reactions of these complexes. These reactions include the disproportionation of [HCo(dppe)(2)](+) to form [Co(dppe)(2)](+) and [H(2)Co(dppe)(2)](+), the reaction of [Co(dppe)(2)](+) with H(2), the protonation and deprotonation reactions of the various hydride species, and the relative ability of the hydride complexes to act as hydride donors.  相似文献   

2.
The coordination properties of the EN ligands N-(2-pyridinyl)amino-diphenylphosphine sulfide, N-(2-pyridinyl)amino-diisopropylphosphine sulfide, N-(2-pyridinyl)amino-diphenylphosphine selenide, N-(2-pyridinyl)amino-diisopropylphosphine selenide towards copper(I) precursors CuX (X = Br, I), [Cu(IPr)Cl] (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene), and [Cu(CH(3)CN)(4)]PF(6) were studied. Treatment of CuX with EN ligands resulted in the formation of tricoordinate complexes of the type [Cu(κ(2)(E,N)-EN)X]. The reaction of [Cu(IPr)Cl] with EN ligands, followed by halide abstraction with AgSbF(6), afforded cationic tricoordinate complexes [Cu(κ(2)(S,N)-EN)(IPr)](+), while the reaction of [Cu(CH(3)CN)(4)](+) with two equivalents of EN ligands yielded tetrahedral complexes [Cu(κ(2)(E,N)-EN)(2)](+). Halide removal from [Cu(κ(2)(S,N)-SN)I] with silver salts in the presence of L = CH(3)CN and CNtBu afforded dinuclear complexes of the type [Cu(κ(2)(S,N),μ(S)-SN)(L)](2)(2+) containing bridging SN ligands. With the terminal alkynes HC≡CC(6)H(4)Me and HC≡CC(6)H(4)OMe, complexes of the formula [Cu(κ(2)(S,N)-SN-iPr)(η(2)-HC≡CC(6)H(4)Me)](+) and [Cu(κ(2)(S,N)-SN-iPr)(η(2)-HC≡CC(6)H(4)OMe)](+) were obtained. The mononuclear nature of these compounds was supported by DFT calculations. Most complexes were also characterized by X-ray crystallography.  相似文献   

3.
The reaction of [N(PPh(3))(2)][CpCo(CN)(3)] and [Cb*Co(NCMe)(3)]PF(6) (Cb* = C(4)Me(4)) in the presence of K(+) afforded {K subset[CpCo(CN)(3)](4)[Cb*Co](4)}PF(6), [KCo(8)]PF(6). IR, NMR, ESI-MS indicate that [KCo(8)]PF(6) is a high-symmetry molecular box containing a potassium ion at its interior. The analogous heterometallic cage {K subset[Cp*Rh(CN)(3)](4)[Cb*Co](4)}PF(6) ([KRh(4)Co(4)]PF(6)) was prepared similarly via the condensation of K[Cp*Rh(CN)(3)] and [Cb*Co(NCMe)(3)]PF(6). Crystallographic analysis confirmed the structure of [KCo(8)]PF(6). The cyanide ligands are ordered, implying that no Co-CN bonds are broken upon cage formation and ion complexation. Eight Co-CN-Co edges of the box bow inward toward the encapsulated K(+), and the remaining four mu-CN ligands bow outward. MeCN solutions of [KCo(8)](+) and [KRh(4)Co(4)](+) were found to undergo ion exchange with Cs(+) to give [CsCo(8)](+) and [CsRh(4)Co(4)](+), both in quantitative yields. Labeling experiments involving [(MeC5H4)Co(CN)(3)]- demonstrated that Cs(+)-for-K(+) ion exchange is accompanied by significant fragmentation. Ion exchange of NH(4+) with [KCo(8)](+) proceeds to completion in THF solution, but in MeCN solution, the exclusive products were [Cb*Co(NCMe)(3)]PF(6) and the poorly soluble salt NH(4)CpCo(CN)(3). The lability of the NH(4+)-containing cage was also indicated by the rapid exchange of the acidic protons in [NH(4)Co(8)](+). Oxidation of [MCo(8)](+) with 4 equiv of FcPF(6) produced paramagnetic (S = 4/2) [Co(8)](4+), releasing Cs(+) or K(+). The oxidation-induced dissociation of M(+) from the cages is chemically reversed by treatment of [Co(8)](4+) and CsOTf with 4 equiv of Cp(2)Co. Cation recognition by [Co(8)] and [Rh(4)Co(4)] cages was investigated. Electrochemical measurements indicated that E(1/2)(Cs(+))--E(1/2)(K(+)) approximately 0.08 V for [MCo(8)](+).  相似文献   

4.
A series of asymmetrical bis-tridentate cyclometalated complexes including [Ru(Mebib)(Mebip)](+), [Ru(Mebip)(dpb)](+), [Ru(Mebip)(Medpb)](+), and [Ru(Mebib)(tpy)](+) and two bis-tridentate noncyclometalated complexes [Ru(Mebip)(2)](2+) and [Ru(Mebip)(tpy)](2+) were prepared and characterized, where Mebib is bis(N-methylbenzimidazolyl)benzene, Mebip is bis(N-methylbenzimidazolyl)pyridine, dpb is 1,3-di-2-pyridylbenzene, Medpb is 4,6-dimethyl-1,3-di-2-pyridylbenzene, and tpy is 2,2':6',2″-terpyridine. The solid-state structure of [Ru(Mebip)(Medpb)](+) is studied by X-ray crystallographic analysis. The electrochemical and spectroscopic properties of these ruthenium complexes were studied and compared with those of known complexes [Ru(tpy)(dpb)](+) and [Ru(tpy)(2)](2+). The change of the supporting ligands and coordination environment allows progressive modulation of the metal-associated redox potentials (Ru(II/III)) from +0.26 to +1.32 V vs Ag/AgCl. The introduction of a ruthenium cyclometalated bond in these complexes results in a significant negative potential shift. The Ru(II/III) potentials of these complexes were analyzed on the basis of Lever's electrochemical parameters (E(L)). Density functional theory (DFT) and time-dependent DFT calculations were carried out to elucidate the electronic structures and spectroscopic spectra of complexes with Mebib or Mebip ligands.  相似文献   

5.
Wei QH  Yin GQ  Zhang LY  Shi LX  Mao ZW  Chen ZN 《Inorganic chemistry》2004,43(11):3484-3491
A series of Ag(I)-Cu(I) heteronuclear alkynyl complexes were prepared by reaction of polymeric (MCCC(6)H(4)R-4)(n)() (M = Cu(I) or Ag(I); R = H, CH(3), OCH(3), NO(2), COCH(3)) with [M'(2)(mu-Ph(2)PXPPh(2))(2)(MeCN)(2)](ClO(4))(2) (M' = Ag(I) or Cu(I); X = NH or CH(2)). Heterohexanuclear complexes [Ag(4)Cu(2)(mu-Ph(2)PNHPPh(2))(4)(CCC(6)H(4)R-4)(4)](ClO(4))(2) (R = H, 1; CH(3), 2) were afforded when X = NH, and heterooctanuclear complexes [Ag(6)Cu(2)(micro-Ph(2)PCH(2)PPh(2))(3)(CCC(6)H(4)R-4)(6)(MeCN)](ClO(4))(2) (R = H, 3; CH(3), 4; OCH(3), 5; NO(2), 6) were isolated when X = CH(2). Self-assembly reaction between (MCCC(6)H(4)COCH(3)-4)(n) and [M'(2)(mu-Ph(2)PCH(2)PPh(2))(2)(MeCN)(2)](ClO(4))(2), however, gave heterohexadecanuclear complex [Ag(6)Cu(2)(micro-Ph(2)PCH(2)PPh(2))(3)(CCC(6)H(4)COCH(3)-4)(6)](2)(ClO(4))(4) (7). The heterohexanuclear complexes 1 and 2 show a bicapped cubic skeleton (Ag(4)Cu(2)C(4)) consisting of four Ag(I) and two Cu(I) atoms and four acetylide C donors. The heterooctanuclear complexes 3-6 exhibit a waterwheel-like structure that can be regarded as two Ag(3)Cu(CCC(6)H(5))(3) components put together by three bridging Ph(2)PCH(2)PPh(2) ligands. The heterohexadecanuclear complex 7 can be viewed as a dimer of heterooctanuclear complex [Ag(6)Cu(2)(micro-Ph(2)PCH(2)PPh(2))(3)(CCC(6)H(4)COCH(3)-4)(6)](ClO(4))(2) through the silver and acetyl oxygen (Ag-O = 2.534 (4) A) linkage between two waterwheel-like Ag(6)Cu(2) units. All of the complexes show intense luminescence in the solid states and in fluid solutions. The microsecond scale of lifetimes in the solid state at 298 K reveals that the emission is phosphorescent in nature. The emissive state in compounds 1-5 is likely derived from a (3)LMCT (CCC(6)H(4)R-4 --> Ag(4)Cu(2) or Ag(6)Cu(2)) transition, mixed with a metal cluster-centered (d --> s) excited state. The lowest lying excited state in compounds 6 and 7 containing electron-deficient 4-nitrophenylacetylide and 4-acetylphenylacetylide, respectively, however, is likely dominated by an intraligand (3)[pi --> pi] character.  相似文献   

6.
A full account of a chemical system possessing features that mimic the reactivity aspects of tyrosinase is presented. Using dinucleating ligands with a m-xylyl spacer three new dicopper(I) complexes have been synthesized and their reactivity with dioxygen investigated. The six-membered chelate ring forming ligands provide only two nitrogen coordinations to each copper. The complexes [Cu(I)(2)L(CH(3)CN)(2)]X(2) (X = ClO(4)(-) (1a), SbF(6)(-) (1b)) and [Cu(I)(2)(L-NO(2))(CH(3)CN)(2)][SbF(6)](2) (1c) [L = alpha,alpha'-bis[N-methyl-N-(2-pyridylethyl)amino]-m-xylene; L-NO(2) = para-nitro derivative of L] have been characterized by IR and (1)H NMR spectroscopy. The reaction of O(2) with 1a-c in CH(2)Cl(2) or THF is instantaneous and causes stoichiometric xylyl hydroxylation reactions producing phenol products. Thus 1a produces phenoxo-/hydroxo-bridged product [Cu(II)(2)(L-O)(OH)][ClO(4)](2) (2a). The existence of putative peroxo-dicopper(II) species could not be detected even at -80 degrees C. A trend is observed for the extent of aromatic ring hydroxylation (298 K): CH(3)CN approximately DMF > CH(3)OH > CH(2)Cl(2). Cyclic voltammetric experiment of 1a in DMF reveals an appreciably low redox potential (E(1/2) = -0.26 V vs SCE) for the Cu(II)(2)/Cu(I)(2) redox process. Variable-temperature (25-300 K) magnetic susceptibility measurements establish that the copper(II) centers in 2a and the dihydroxo-bridged complex [Cu(II)(2)L'(OH)(2)][ClO(4)](2) (2b) [formed due to an impurity (L') present during the synthesis of L following Method A; L' = bis[alpha,alpha'-bis(N-methyl-N-(2-pyridylethyl)amino)-m-xylene]methylamine] are antiferromagnetically coupled, with 2a considerably more coupled than 2b. Reaction of 1a with O(2) in CH(2)Cl(2) (298 K) produces an additional unhydroxylated product of composition [Cu(II)(2)L(OH)(OH(2))][ClO(4)](3).2H(2)O.0.5HCl (3a). In agreement with its proposed hydroxo-/aquo-bridged structure, 3a is weakly antiferromagnetically coupled. In CH(3)CN solution, 3a rearranges to generate a doubly hydroxo-bridged species [Cu(II)(2)L(OH)(2)](2+). Using a solution-generated dicopper(I) complex of a closely similar ligand (L' ') providing five-membered chelate ring, the reactivity toward dioxygen was also investigated. It produces only an irreversibly oxidized product of composition Cu(II)(2)L' '(OH)(ClO(4))(3)(H(2)O)(2) (3b) (L' ' = alpha,alpha'-bis[N-methyl-N-(2-pyridylmethyl)amino]-m-xylene). For 3b the copper(II) centers are almost uncoupled.  相似文献   

7.
The complex Re(III)(benzil)(PPh(3))Cl(3) (2) is used to synthesize a variety of Re(III) and Re(II) polypyridyl complexes of the type cis-[Re(III)(L(2))(2)Cl(2)](+), [Re(II)(L(2))(3)](2+), Re(III)(L(3))Cl(3), [Re(III)(L(3))(2)Cl](2+), and [Re(III)(L(4))Cl(2)](+), where L(2) = bpy (3and 6), tbpy (4 and 7), phen (5 and 8); L(3) = terpy (9and 10); L(4) = TMPA (11). The complex cis-[Re(III)(bpy)(2)Cl(2)](+) (3) is a useful synthon in the formation of complexes of the type [Re(bpy)(2)L(x)()](n)()(+) that are six- or seven-coordinate Re(III) complexes (13, 16, and 18) or octahedral Re(II) or Re(I) complexes (12 and 17). The [Re(III)(terpy)(2)Cl](2+) (10) complex can be reduced to form the Re(I) complex, [Re(I)(terpy)(2)](+) (21) and then electrochemically reoxidized to form new complexes of the type [Re(III)(terpy)(2)L](n)()(+). Similar behavior is observed for the [Re(II)(bpy)(3)](2+) (6) complex where [Re(III)(bpy)(3)((t)BuNC)](3+) (20) and [Re(I)(bpy)(3)](+) (19) may be formed. The electrochemistry of these complexes is discussed in relation to their reactivity and the observed pi-acidity of the polypyridyl ligands. In addition, X-ray crystal structures for cis-[Re(III)(bpy)(2)Cl(2)]PF(6) (3) and [Re(I)(bpy)(3)]PF(6) (19) are reported. cis-[Re(III)(bpy)(2)Cl(2)]PF(6) (3, ReC(20)H(16)N(4)Cl(2)F(6)P) crystallizes in the monoclinic space group C2/c with Z = 4 and lattice parameters a = 15.043(5) ?, b = 13.261(4) ?, c = 12.440(4) ?, and beta = 108.86(2) degrees at -100 degrees C. [Re(I)(bpy)(3)]PF(6) (19, ReC(30)H(24)N(6)F(6)P) crystallizes in the rhombohedral space group R&thremacr;c(h) (No. 167) with Z = 12 and lattice parameters a = 13.793(3) ? and c = 51.44(3) ? at -100 degrees C.  相似文献   

8.
The dicopper(II) complex [Cu(2)(L)](4+) (L = alpha,alpha'-bis[bis[2-(1'-methyl-2'-benzimidazolyl)ethyl]amino]-m-xylene) reacts with hydrogen peroxide to give the dicopper(II)-hydroquinone complex in which the xylyl ring of the ligand has undergone a double hydroxylation reaction at ring positions 2 and 5. The dihydroxylated ligand 2,6-bis([bis[2-(3-methyl-1H-benzimidazol-2-yl)ethyl]amino]methyl)benzene-1,4-diol was isolated by decomposition of the product complex. The incorporation of two oxygen atoms from H(2)O(2) into the ligand was confirmed by isotope labeling studies using H(2)(18)O(2). The pathway of the unusual double hydroxylation was investigated by preparing the two isomeric phenolic derivatives of L, namely 3,5-bis([bis[2-(1-methyl-1H-benzimidazol-2-yl)ethyl]amino]methyl)phenol (6) and 2,6-bis([bis[2-(1-methyl-1H-benzimidazol-2-yl)ethyl]amino]methyl)phenol (7), carrying the hydroxyl group in one of the two positions where L is hydroxylated. The dicopper(II) complexes prepared with the new ligands 6 and 7 and containing bridging micro-phenoxo moieties are inactive in the hydroxylation. Though, the dicopper(II) complex 3 derived from 6 and containing a protonated phenol is rapidly hydroxylated by H(2)O(2) and represents the first product formed in the hydroxylation of [Cu(2)(L)](4+). Kinetic studies performed on the reactions of [Cu(2)(L)](4+) and 3 with H(2)O(2) show that the second hydroxylation is faster than the first one at room temperature (0.13 +/- 0.05 s(-1) vs 5.0(+/-0.1) x 10(-3) s(-1)) and both are intramolecular processes. However, the two reactions exhibit different activation parameters (Delta H++ = 39.1 +/- 0.9 kJ mol(-1) and Delta S++ = -115.7 +/- 2.4 J K(-1) mol(-1) for the first hydroxylation; Delta H++ = 77.8 +/- 1.6 kJ mol(-1) and Delta S++ = -14.0 +/- 0.4 J K(-1) mol(-1) for the second hydroxylation). By studying the reaction between [Cu(2)(L)](4+) and H(2)O(2) at low temperature, we were able to characterize the intermediate eta(1):eta(1)-hydroperoxodicopper(II) adduct active in the first hydroxylation step, [Cu(2)(L)(OOH)](3+) [lambda(max) = 342 (epsilon 12,000), 444 (epsilon 1200), and 610 nm (epsilon 800 M(-1)cm(-1)); broad EPR signal in frozen solution indicative of magnetically coupled Cu(II) centers].  相似文献   

9.
Both manganese and rhenium complexes of the type [M(bipy)(CO)(3)(N-RIm)](+) (bipy=2,2'-bipyridine) undergo deprotonation of the central CH group of the N-alkylimidazole (N-RIm) ligand when treated with a strong base. However, the outcome of the reaction is very different for either metal. For Mn, the addition of the equimolar amount of an acid to the product of the deprotonation affords an N-heterocyclic carbene (NHC) complex, whereas for Re, once the deprotonation of the central imidazole CH group has occurred, the bipy ligand undergoes a nucleophilic attack on an ortho carbon, affording the C-C coupling product. The extension of these studies to pseudo-octahedral [Mo(η(3)-allyl)(bipy)(CO)(2)(N-RIm)](+) complexes has allowed us to isolate cationic NHC complexes (Mn(I)-type behavior), as well as their neutral imidazol-2-yl precursors. Theoretical studies of the reaction mechanisms using DFT computations were carried out on the deprotonation of [Mn(bipy)(CO)(3)(N-PhIm)](+), [Re(bipy)(CO)(3) (N-MesIm)](+), and [Mo(η(3)-C(4)H(7))(bipy)(CO)(2) (N-MesIm)](+) complexes (Mes=mesityl) at the B3LYP/6-31G(d) (LANL2DZ for Mn, Re, and Mo) level of theory. Our results explain why different products have been found experimentally for Mn, Mo, and Re complexes. For Re, the process leading to a C-C coupling product is clearly more favored than those forming an imidazol-2-yl product. In contrast, for Mn and Mo complexes, the lower stabilizing interaction between the central imidazole and ortho bipy C atoms, along with the higher lability of the ligands, make the formation of an NHC-type product kinetically more accessible, in good agreement with experimental findings.  相似文献   

10.
He C  Lippard SJ 《Inorganic chemistry》2000,39(23):5225-5231
The synthesis of dicopper(I) complexes [Cu2(BBAN)(MeCN)2](OTf)2 (1), [Cu2(BBAN)(py)2](OTf)2 (2), [Cu2(BBAN)(1-Me-BzIm)2](OTf)2 (3), [Cu2(BBAN)(1-Me-Im)2](OTf)2 (4), and [Cu2(BBAN)(mu-O2CCPh3)](OTf) (5), where BBAN = 2,7-bis((dibenzylamino)methyl)-1,8-naphthyridine, py = pyridine, 1-Me-Im = 1-methylimidazole, and 1-Me-BzIm = 1-methylbenzimidazole, are described. Short copper-copper distances ranging from 2.6151(6) to 2.7325(5) A were observed in the solid-state structures of these complexes depending on the terminal ligands used. The cyclic voltammogram of compound 5 dissolved in THF exhibited a reversible redox wave at E1/2 = -25 mV vs Cp2Fe+/Cp2Fe. When complex 5 was treated with 1 equiv of silver(I) triflate, a mixed-valence dicopper(I,II) complex [Cu2(BBAN)(mu-O2CCPh3)(OTf)](OTf) (6) was prepared. A short copper-copper distance of 2.4493(14) A observed from the solid-state structure indicates the presence of a copper-copper interaction. Variable-temperature EPR studies showed that complex 6 has a fully delocalized electronic structure in frozen 2-methyltetrahydrofuran solution down to liquid helium temperature. The presence of anionic ligands seems to be an important factor to stabilize the mixed-valence dicopper(I,II) state. Compounds 1-4 with neutral nitrogen-donor terminal ligands cannot be oxidized to the mixed-valence analogues either chemically or electrochemically.  相似文献   

11.
Adducts of triorganophosphine, triphenylarsine, and triphenylstibine with silver(I) nitrite have been synthesized and characterized both in solution ((1)H, (31)P NMR) and in the solid state (IR, single-crystal X-ray structure analysis). In addition aggregates of AgNO(2) and ER(3) (E = P, As, Sb) have been identified in solution by electrospray ionization mass spectrometry (ESI-MS). The topology of the structures in the solid state was found to depend on the nature of ER(3) and on the stoichiometric ratio AgNO(2):ER(3). The adducts AgNO(2):EPh(3) (1:1) (E = P or Sb) are one-dimensional polymers, the role of NO(2)(-) being to bridge successive metal atoms by coordination of the two oxygens to one silver atom and the nitrogen lone pair to a successive Ag. The adduct AgNO(2):P(o-tolyl)(3) (1:1) is mononuclear, due to steric hindrance of the phosphine, the nitrite being O,O'-bidentate, a rare example of a quasi-linear P-Ag-X array. AgNO(2):P(p-F-C(6)H(4))(3) (1:1) is a dimer, the nitrite being coordinated through both oxygens, the first unidentate, the second bridging bidentate. P(o-tolyl)(3) and Pcy(3) form 1:2 adducts, also mononuclear, the nitrite still an O,O'-chelate. In contrast, the adduct AgNO(2):AsPh(3) (1:2) is a centrosymmetric dimer, essentially an aggregate of a pair of [Ag(O(2)N)(AsPh(3))(2)] arrays with one nitrite oxygen being the bridging atom. The adducts AgNO(2):EPh(3) (1:3) (E = As, Sb) are mononuclear, the nitrite behaving as a consistently strong O,O'-chelate. The E = As adduct is a triclinic solvated form, whereas the unsolvated E = Sb species is monoclinic. ESI-MS spectra of acetonitrile solutions of these complexes show the existence of [Ag(ER(3))](+), [Ag(CH(3)CN)](+), [Ag(CH(3)CN)(2)](+), [AgCl(2)](-), [Ag(NO(2))(2)](-), [Ag(ER(3))(CH(3)CN)](+), and [Ag(ER(3))(2)](+) as well as higher aggregates [Ag(2)(NO(2))(ER(3))(2)](+), [Ag(2)(NO(2))(3)](-) and [Ag(2)Cl(2)(NO(2))](-), which are less prevalent.  相似文献   

12.
The synthesis and characterization of the complexes of Cu(I), Ag(I), Cu(II), and Co(II) ions with 1,2,5-selenadiazolopyridine (psd) is reported. The following complexes have been prepared: [Cu(2)(psd)(3)(CH(3)CN)(2)](2+)2(PF(6)(-)); [(CuCl)(2)(psd)(3)]; [Cu(2)(psd)(6)](2+)2(ClO(4))(-); [Ag(2)(psd)(2)](2+)2(NO(3))(-); [Ag(2)(psd)(2)](2+)2(CF(3)COO)(-); [Cu(psd)(2)(H(2)O)(3)](2+)2(ClO(4))(-)·(psd)(2); [Cu(psd)(4)(H(2)O)](2+)2(ClO(4))(-)·(CHCl(3)); [Cu(psd)(2)(H(2)O)(3)](2+)2(NO(3))(-)·(H(2)O)·(psd)(2), and [Co(psd)(2)(H(2)O)(4)](2+)2(ClO(4))(-)·(psd)(2). The electronic structure of ligand psd, in particular the bond order of Se-N bonds, has been probed by X-ray diffraction, (77)Se NMR, and computational studies. A detailed analysis of the crystal structures of the ligand and the complexes revealed interesting supramolecular assembly. The assembly was further facilitated by the presence of neutral ligands for some complexes (Cu(II) and Co(II)). The molecular structure of the ligand showed that it was present as a dimer in the solid state where the monomers were linked by strong secondary bonding Se···N interactions. The crystal structures of Cu(I) and Ag(I) complexes revealed the dinuclear nature with characteristic metallophilic interactions [M···M] (M = Cu, Ag), while the Cu(II) and Co(II) complexes were mononuclear. The presence of M···M interactions has been further probed by Atoms in Molecules (AIM) calculations. The paramagnetic Cu(II) and Co(II) complexes have been characterized by UV-vis, ESI spectroscopy, and room temperature magnetic measurements.  相似文献   

13.
Silver(I) and copper(I) halide derivatives of several tetrakis(diphenylphosphinito)resorcinarene ligands are reported. The complexes [resorcinarene(O(2)CR)(4)(OPPh(2))(4)(M(5)X(5))], with resorcinarene = (PhCH(2)CH(2)CHC(6)H(2))(4), R = C(6)H(11), 4-C(6)H(4)Me, C(4)H(3)S, OCH(2)CCH, or OCH(2)Ph, M = Ag, X = Cl, Br, or I, M = Cu, and X = Cl or I, contain a crownlike [P(4)M(5)X(5)] metal halide cluster. These crown clusters were found to be dynamic in solution, as studied by variable-temperature NMR, and easily fragment to give the corresponding complexes containing [P(4)M(4)X(5)](-) and [P(4)M(2)(micro-X)](+) units. Reaction of pentasilver crown clusters with triflic acid gave the corresponding disilver complexes [resorcinarene(O(2)CR)(4)(OPPh(2))(4)]Ag(2)(micro-Cl)]]CF(3)SO(3). Thus, these resorcinarene-based ligands act as a platform for the easy and reversible assembly of copper(I) and silver(I) clusters with novel structures.  相似文献   

14.
Eight bis-bidentate Schiff-base ligands, derived from 3,6-diformylpyridazine and substituted amino-benzenes, have been prepared. A variety of electron donating/withdrawing and/or sterically demanding/undemanding substituents were employed. Two ligands and five of the six pure copper(I) complexes have been structurally characterised. The sterically unhindered ligand derived from 3,5-difluoroaniline, (m,m-F), was almost completely flat whereas the very sterically hindered ligand derived from trimethylaniline, (o,o,p-Me), was severely twisted. The only dinuclear side-by-side complex obtained, [Cu(I)(2)((o-Ph))(2)](PF(6))(2), was of the ligand derived from 2-aminobiphenyl. All five of the other complexes are believed to be [2 x 2] tetranuclear grid complexes, and this was unequivocally shown to be the case for four of these complexes, [Cu(I)(4)((p-Me))(4)](PF(6))(4), [Cu(I)(4)((o,p-Me))(4)](PF(6))(4), [Cu(I)(4)((m,m-F))(4)](PF(6))(4) and [Cu(I)(4)((m,m-Cl))(4)](PF(6))(4). In all cases the copper(I) centres are substantially distorted from tetrahedral, with the most severe distortion present in the side-by-side complex. In the absence of any special effects, tetracopper(I) [2 x 2] grid architectures are observed to be the favored outcome for 1 : 1 reactions of these bis-bidentate ligands with copper(I) ions. Only when the aromaticity of the ligand was extended by employing a phenyl substituent on the phenyl rings, (o-Ph), did a dicopper(I) side-by-side architecture result. Cyclic voltammetry in acetone revealed that the free ligands did not undergo reduction until potentials below -0.8 V, whereas between three and four reversible one electron reductions were observed, between +0.16 and -0.71 vs. AgCl/Ag, for the tetranuclear copper(I) [2 x 2] grid complexes. The redox potentials observed for these complexes are highly dependent on the nature of the ligand phenyl ring substituent(s). The side-by-side complex had one irreversible reduction process, E(pc)ca.-0.5 V.  相似文献   

15.
Copper(I) complexes with tripodal nitrogen-containing neutral ligands such as tris(3,5-diisopropyl-1-pyrazolyl)methane (L1') and tris(3-tertiary-butyl-5-isopropyl-1-pyrazolyl)methane (L3'), and with corresponding anionic ligands such as hydrotris(3,5-diisopropyl-1-pyrazolyl)borate (L1-) and hydrotris(3-tertiary-butyl-5-isopropyl-1-pyrazolyl)borate (L3-) were synthesized and structurally characterized. Copper(I) complexes [Cu(L1')Cl] (1), [Cu(L1')(OClO3)] (2), [Cu(L1')(NCMe)](PF6) (3a), [Cu(L1')(NCMe)](ClO4) (3b), [Cu(L1')(CO)](PF6) (4a), and [Cu(L1')(CO)](ClO4) (4b) were prepared using the ligand L1'. Copper(I) complexes [Cu(L3')Cl] (5) and [Cu(L3')(NCMe)](PF6) (6) with the ligand L3' were also synthesized. Copper(I) complexes [Cu(L1)(NCMe)] (7) and [Cu(L1)(CO)] (8) were prepared using the anionic ligand L1-. Finally, copper(I) complexes with anionic ligand L3- and acetonitrile (9) and carbon monoxide (10) were synthesized. The complexes obtained were fully characterized by IR, far-IR, 1H NMR, and 13C NMR spectroscopy. The structures of both ligands, L1' and L3', and of complexes 1, 2, 3a, 3b, 4a, 4b, 5, 6, 7, and 10 were determined by X-ray crystallography. The effects of the differences in (a) the fourth ligand and the counteranion, (b) the steric hindrance at the third position of the pyrazolyl rings, and most importantly, (c) the charge of the N3 type ligands, on the structures, spectroscopic properties, and reactivities of the copper(I) complexes are discussed. The observed differences in the reactivities toward O2 of the copper(I) acetonitrile complexes are traced back to differences in the oxidation potentials determined by cyclic voltammetry. A special focus is set on the carbonyl complexes, where the 13C NMR and vibrational data are presented. Density functional theory (DFT) calculations are used to shed light on the differences in CO bonding in the compounds with neutral and anionic N3 ligands. In correlation with the vibrational and electrochemical data of these complexes, it is demonstrated that the C-O stretching vibration is a sensitive probe for the "electron richness" of copper(I) in these compounds.  相似文献   

16.
Four new potentially polytopic nitrogen donor ligands based on the 1,3,5-triazine fragment, L(1)-L(4) (L(1) = 2-chloro-4,6-di(1H-pyrazol-1-yl)-1,3,5-triazine, L(2) = N,N'-bis(4,6-di(1H-pyrazol-1-yl)-1,3,5-triazin-2-yl)ethane-1,2-diamine, L(3) = 2,4,6-tris(tri(1H-pyrazol-1-yl)methyl)-1,3,5-triazine, and L(4) = 2,4,6-tris(2,2,2-tri(1H-pyrazol-1-yl)ethoxy)-1,3,5-triazine) have been synthesized and characterized. The X-ray crystal structure of L(3) confirms that its molecular nature consists of a 1,3,5-triazine ring bearing three tripodal tris(pyrazolyl) arms. L(1), L(2), and L(4) react with Cu(I), Cu(II), Pd(II) and Ag(I) salts yielding mono-, di-, and oligonuclear derivatives: [Cu(L(1))(Cy(3)P)]ClO(4), [{Ag(2)(L(2))}(CF(3)SO(3))(2)]·H(2)O, [Cu(2)(L(2))(NO(3))(2)](NO(3))(2)·H(2)O, [Cu(2)(L(2))(CH(3)COO)(2)](CH(3)COO)(2)·3H(2)O, [Pd(2)(L(2))(Cl)(4)]·2H(2)O, [Ru(L(2))(Cl)(OH)]·CH(3)OH, [Ag(3)(L(4))(2)](CF(3)SO(3))(3) and [Ag(3)(L(4))(2)](BF(4))(3). The interaction of L(3) with Ag(I), Cu(II), Zn(II) and Ru(II) complexes unexpectedly produced the hydrolysis of the ligand with formation, in all cases, of tris(pyrazolyl)methane (TPM) derivatives. In detail, the already known [Ag(TPM)(2)](CF(3)SO(3)) and [Cu(TPM)(2)](NO(3))(2), as well as the new [Zn(TPM)(2)](CF(3)SO(3))(2) and [Ru(TMP)(p-cymene)]Cl(OH)·2H(2)O complexes have been isolated. Single-crystal XRD determinations on the latter derivatives confirm their formulation, evidencing, for the Ru(II) complex, an interesting supramolecular arrangement of the anions and crystallization water molecules.  相似文献   

17.
Oxidation of the electron-rich (E(1/2) = -175 vs Ag/AgCl) ethanedithiolato complex Fe2(S2C2H4)(CO)2(dppv)2 (1) under a CO atmosphere yielded [Fe2(S2C2H4)(mu-CO)(CO)2(dppv)2](+) ([1(CO)](+)), a model for the H(ox)(CO) state of the [FeFe]-hydrogenases. This complex exists as two isomers: a kinetically favored unsymmetrical derivative, unsym-[1(CO)](+), and a thermodynamically favored isomer, sym-[1(CO)](+), wherein both diphosphines span apical and basal sites. Crystallographic characterization of sym-[1(CO)](+) confirmed a C2-symmetric structure with a bridging CO ligand and an elongated Fe-Fe bond of 2.7012(14) A, as predicted previously. Oxidation of sym-[1(CO)](+) and unsym-[1(CO)](+) again by 1e(-) oxidation afforded the respective diamagnetic diferrous derivatives where the relative stabilities of the sym and unsym isomers are reversed. DFT calculations indicate that the stabilities of sym and unsym isomers are affected differently by the oxidation state of the diiron unit: the mutually trans CO ligands in the sym isomer are more destabilizing in the mixed-valence state than in the diferrous state. EPR analysis of mixed-valence complexes revealed that, for [1](+), the unpaired spin is localized on a single iron center, whereas for unsym/sym-[1(CO)](+), the unpaired spin was delocalized over both iron centers, as indicated by the magnitude of the hyperfine coupling to the phosphine ligands trans to the Fe-Fe vector. Oxidation of 1 by 2 equiv of acetylferrocenium afforded the dication [1](2+), which, on the basis of low-temperature IR spectrum, is structurally similar to [1](+). Treatment of [1](2+) with CO gives unsym-[1(CO)](2+).  相似文献   

18.
Treatment of [M(CO)(6)](-), M = Nb, Ta, with Ag(+), I(2) or NO(+) in the presence of CNXyl provided [M(CNXyl)(7)](+), M(CNXyl)(6)I, or cis-[M(CNXyl)(4)(NO)(2)](+), which are isocyanide analogues of the unknown carbonyl complexes [M(CO)(7)](+), M(CO)(6)I, or cis-[M(CO)(4)(NO)(2)](+), respectively. Reduction of M(CNXyl)(6)I by cesium graphite gave the respective Cs[M(CNXyl)(6)], which have been structurally characterized and represent the first isolable homoleptic isocyanidemetalates for second or third row transition metals. Nitrosylation of [Ta(CNXyl)(6)](-) affords a rare example of a mononitrosyl tantalum complex, Ta(CNXyl)(5)NO, which is an isocyanide analogue of the unknown Ta(CO)(5)NO. This study emphasizes, inter alia, the remarkable versatility of the CNXyl ligand compared to CO in stabilizing various electronic environments at heavier group 5 metal centers.  相似文献   

19.
The halide ligands of [Fe(4)C(CO)(12)(CuCl)(2)](2-) (1) and [Fe(5)C(CO)(14)CuCl](2-) (2) can be displaced by N-, P- or S-donors. Beside substitution, the clusters easily undergo structural rearrangements, with loss/gain of metal atoms, and formation of Fe(4)Cu/Fe(4)Cu(3) metallic frameworks. Thus, the reaction of 1 with excess dppe yielded [{Fe(4)C(CO)(12)Cu}(2)(μ-dppe)](2-) (3). [{Fe(4)C(CO)(12)Cu}(2)(μ-pyz)](2-) (4) was obtained by reaction of 2 with Ag(+) and pyrazine. [Fe(4)C(CO)(12)Cu-py](-) (5) was formed more directly from [Fe(4)C(CO)(12)](2-), [Cu(NCMe)(4)](+) and pyridine. [Fe(4)Cu(3)C(CO)(12)(μ-S(2)CNEt(2))(2)](-) (6) and [{Fe(4)Cu(3)C(CO)(12)(μ-pz)(2)}(2)](2-) (7) were prepared by substitution of the halides of 1 with diethyldithiocarbamate and pyrazolate, in the presence of Cu(i) ions. All of these products were characterized by X-ray analysis. 3 and 4 and 5 are square based pyramids, with iron in the apical sites, the bridging ligands connect the two copper atoms in 3 and 4. 6 and 7 are octahedral clusters with an additional copper ion held in place by the two bridging anionic ligands, forming a Cu(3) triangle with Cu-Cu distances ranging 2.63-3.13 ?. In 7, an additional unbridged cuprophilic interaction (2.75 ?) is formed between two such cluster units. DFT calculations were able to reproduce the structural deformations of 3-5, and related their differences to the back-donation from the ligand to Cu. Additionally, DFT found that, in solution, the tight ion pair [NEt(4)](2)7 is almost isoenergetic with the monomeric form. Thus, 3, 4 and 7 are entities of nanometric size, assembled either through conventional metal-ligand bonds or weaker electrostatic interactions. None of them allows electronic communication between the two monomeric units, as shown by electrochemistry and spectroelectrochemical studies. (dppe = PPh(2)CH(2)CH(2)PPh(2), pyz = pyrazine C(4)N(2)H(4), py = pyridine C(5)H(5)N, pz = pyrazolate C(3)N(2)H(3)(-)).  相似文献   

20.
Fang XQ  Deng ZP  Huo LH  Wan W  Zhu ZB  Zhao H  Gao S 《Inorganic chemistry》2011,50(24):12562-12574
Self-assembly of silver(I) salts and three ortho-hydroxyl and carboxyl groups decorated arenesulfonic acids affords the formation of nine silver(I)-sulfonates, (NH(4))·[Ag(HL1)(NH(3))(H(2)O)] (1), {(NH(4))·[Ag(3)(HL1)(2)(NH(3))(H(2)O)]}(n) (2), [Ag(2)(HL1)(H(2)O)(2)](n) (3), [Ag(2)(HL2)(NH(3))(2)]·H(2)O (4), [Ag(H(2)L2)(H(2)O)](n) (5), [Ag(2)(HL2)](n) (6), [Ag(3)(L3)(NH(3))(3)](n) (7), [Ag(2)(HL3)](n) (8), and [Ag(6)(L3)(2)(H(2)O)(3)](n) (9) (H(3)L1 = 2-hydroxyl-3-carboxyl-5-bromobenzenesulfonic acid, H(3)L2 = 2-hydroxyl-4-carboxylbenzenesulfonic acid, H(3)L3 = 2-hydroxyl-5-carboxylbenzenesulfonic acid), which are characterized by elemental analysis, IR, TGA, PL, and single-crystal X-ray diffraction. Complex 1 is 3-D supramolecular network extended by [Ag(HL1)(NH(3))(H(2)O)](-) anions and NH(4)(+) cations. Complex 2 exhibits 3-D host-guest framework which encapsulates ammonium cations as guests. Complex 3 presents 2-D layer structure constructed from 1-D tape of sulfonate-bridged Ag1 dimers linked by [(Ag2)(2)(COO)(2)] binuclear units. Complex 4 exhibits 3-D hydrogen-bonding host-guest network which encapsulates water molecules as guests. Complex 5 shows 3-D hybrid framework constructed from organic linker bridged 1-D Ag-O-S chains while complex 6 is 3-D pillared layered framework with the inorganic substructure constructing from the Ag2 polyhedral chains interlinked by Ag1 dimers and sulfonate tetrahedra. The hybrid 3-D framework of complex 7 is formed by L3(-) trianions bridging short trisilver(I) sticks and silver(I) chains. Complex 8 also presents 3-D pillared layered framework, and the inorganic layer substructure is formed by the sulfonate tetrahedrons bridging [(Ag1O(4))(2)(Ag2O(5))(2)](∞) motifs. Complex 9 represents the first silver-based metal-polyhedral framework containing four kinds of coordination spheres with low coordination numbers. The structural diversities and evolutions can be attributed to the synthetic methods, different ligands and coordination modes of the three functional groups, that is, sulfonate, hydroxyl and carboxyl groups. The luminescent properties of the nine complexes have also been investigated at room temperature, especially, complex 1 presents excellent blue luminescence and can sensitize Tb(III) ion to exhibit characteristic green emission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号