首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High power red light was generated from a periodically-poled stoichiometric LiTaO3 (PPSLT) by single-pass frequency doubling of a diode-side-pumped, Q-switched Nd:YAG laser at 1319 nm. An average power of 2.4 W of the 660 nm red light was obtained at the fundamental power of ∼5.4 W with the conversion efficiency up to 44.4% and with low fluctuation down to 2%. The high efficiency and stability at the red output indicate that it is a practical method to construct a reliable compact red laser. PACS 42.70.Mp; 42.79.Nv; 42.55.Xi  相似文献   

2.
H. Zhao  I. T. Lima  A. Major 《Laser Physics》2010,20(6):1404-1409
A thorough theoretical analysis of the near-infrared properties of periodically poled KTiOPO4 (PPKTP) and stoichiometric MgO-doped LiTaO3 (MgO:PPSLT) crystals for optical parametric oscillation with excitation at 1 μm is presented. To the best of our knowledge, the optical, phasematching, wavelength tuning, and dispersive properties of these crystals for parametric interactions are discussed in detail for the first time. In addition, a new design for high power parametric devices based on PPKTP or MgO:PPSLT crystals with ultrafast Yb-ion laser pump is proposed. The results form a useful reference for the selection of materials and operating conditions for the practical design of high power femtosecond optical parametric oscillators with excitation at 1 μm.  相似文献   

3.
A dual-color laser of red at 671 nm and ultraviolet (UV) at 411 nm was generated from dual-wavelength fundamental waves at 1342 and 1064 nm with a single periodically poled LiTaO3 (PPLT) optical superlattice. The PPLT sample used consists of two segments in a series: the first segment has a period of 14.55 μm for the second-harmonic generation (SHG) of 1342 nm and the second segment has periods of around 10.3 μm for the generation of UV light by sum-frequency mixing (SFG) of 1064 and 671 nm. An average output power of 3 and 79 mW for UV and red, respectively, has been obtained.  相似文献   

4.
Intra-cavity sum frequency generation (SFG) of c-cut Nd:YVO4 self-Raman laser was investigated for the first time. A 4 × 4 × 10 mm3 KTP crystal with a type-II phase-matching cutting angle (θ = 83.4°, φ = 0°) was used for SFG between the fundamental light at 1066 nm and first-Stokes light at 1178 nm. The laser system with different curvature radii of output couplers and different pulse repetition frequencies were investigated. At a pump power of 14 W and pulse repetition frequency of 20 kHz, the average output power of yellow-green laser at 560 nm up to 840 mW was achieved, corresponding to a slope efficiency of 7.6% and a conversion efficiency of 6% with respect to diode pump power.  相似文献   

5.
A continuous wave (CW), extra-cavity singly resonant optical parametric oscillator (SRO) has been demonstrated. The SRO is based on 5% magnesium-oxide doped periodically-poled lithium niobate (MgO:PPLN) pumped by a CW Nd:YVO4/YVO4 ring laser centered at 1064.4 nm. The nonlinear crystal temperature is kept at 120.0 ± 0.1°C and a domain period of 30 μm is used in this experiment. When the pump power is 11 W, an output power of 2.0 W at the idler wavelength of 3.479 μm has been obtained from the OPO. The optical-optical conversion efficiency is about 18.2%, and the slope efficiency is about 20.8%.  相似文献   

6.
In this paper, we report a 18.8 W continuous wave and 18.4 W Q-switched diode-pumped cryogenic Tm(5 at %), Ho(0.5 at %):GdVO4 laser. The pumping source of Tm, Ho:GdVO4 laser is a fiber-coupled laser diode with fiber core diameter of 0.4 mm, supplying 42 W power at 802.5 nm. For input pump power of 41.9 W at 802.4 nm, the output power of 18.8 W in CW operation, optical-to-optical conversion efficiency of 45% at 2.05 μm and the average output power of 18.4 W in Q-switched operation, optical-to-optical conversion efficiency of 44% at 2.04 and 2.05 μm have been attained. The emission wavelengths of the Tm(5 at %), Ho(0.5 at %):GdVO4 laser were firstly compared when it worked in CW mode and Q-switched mode.  相似文献   

7.
The power scaling capacity of a diode end-pumped Yb:KLu(WO4)2 laser, operating in the continuous-wave (cw) and passively Q-switched regimes, has been investigated. A cw output power of 11.5 W was achieved with an optical-to-optical efficiency of 41% with respect to the incident pump power, while the slope efficiency amounts to 60%. The passively Q-switchedoperation yielded an average output power of 4.3 W at the fundamental wavelength of 1031.7 nm, and 1.15 W of Raman radiation at 1139.3 nm. The total slope efficiency for Q-switched operation was 40%. The highest pulse energy, duration, and peak power were 170 μJ, 2.2 ns, and 77.3 kW for the fundamental radiation, and 51 μJ, 2.3 ns, and 22.2 kW for the Raman radiation. PACS 42.55.Rz; 42.55.Xi; 42.55.Ye  相似文献   

8.
In this paper, we report a 22.7 W continuous wave (CW) diode-pumped cryogenic Ho( at %), Tm(3 at %):GdVO4 laser. The pumping sources of Ho,Tm:GdVO4 laser are two fiber-coupled laser diodes with fiber core diameter of 0.4 mm, both of them can supply 42 W power laser operating near 802 nm. For input pump power of 64.7 W at 802.5 nm, the output power of 22.7 W in CW operation, optical-to-optical conversion efficiency of 35.1% at 2.05 μm has been attained. The M 2 factor was found to be 2.0 under an output power of 16.5 W.  相似文献   

9.
We report the efficient blue laser at 458 nm generation by intracavity frequency doubling of a continuous wave (CW) laser operation of a diode pumped Nd:LuVO4 laser on the 4 F 3/24 I 9/2 transition at 916 nm. An LiB3O5 (LBO) crystal, cut for critical type I phase matching at room temperature is used for second harmonic generation of the laser. At an incident pump power of 18.2 W, as high as 1.73 W of continuous wave (CW) output power at 458 nm is achieved. The optical-to-optical conversion efficiency is up to 9.5%, and the fluctuation of the red output power was better than 3.5% in the given 30 min.  相似文献   

10.
We report a continuous-wave (CW) mid-infrared singly resonant optical parametric oscillator (SRO) based on periodically poled MgO-doped LiNbO3 (PPMgLN) pumped by a high power, single frequency fiber laser in master oscillator-power amplifier (MOPA) configuration at 1.064 μm. Using four-mirror ring OPO cavities, at the PPMgLN’s grating period of 30.5 μm and the temperature of 23°C, we achieved the maximum idler output power of 7.2 W at 3.4 μm when the pump power was 52.8 W. The total power-conversion efficiency from the pump to the idler in this experiment is about 13.6%, and corresponds to ∼44% of quantum-limited performance.  相似文献   

11.
Coherent terahertz radiation in a widely step-tunable range of 72.3–2706 μm (0.11–4.15 THz) has been generated in GaAs crystal by difference-frequency generation using one CO2 laser with dual-wavelength output. The peak power of THz pulse reaches 35 W at the wavelength of 236.3 μm, which corresponds to a pulse energy of 2.1 μJ. An average power of 10 μW has been achieved when working repetitively. This efficient terahertz radiation source is more compact and widely tunable than other THz sources pumped by CO2 laser.  相似文献   

12.
In this paper, we report a Tm (5.5 at %), Ho (0.55 at %):GdVO4 laser pumped by diode laser at 800 nm. To our best knowledge, it is the first time that the use of Tm (5.5 at %), Ho (0.55 at %):GdVO4 crystal among the similar experiments. We observed the influences of LD working temperature i.e. pump wavelength to 2 μm laser conversion efficiency. In the conditions of the continuous wave and 10 kHz acousto-optic Q-switch, high efficiency output of 2.05 μm laser was obtained. With the maximum pump power of 34.6, 13.9, and 13.6 W at 2.05 μm laser output was achieved respectively. Single laser pulse width was 25.6 ns in 10 kHz acousto-optic Q-switched condition.  相似文献   

13.
A compact efficient diode-end-pumped acousto-optically Q-switched intracavity-frequency-tripled Nd:YVO4 355 μm ultraviolet laser was realized. Intracavity sub-resonators with anti-reflection and high-reflection coated mirrors were used to get higher efficiency of third harmonic generation. With two LBO crystals used in frequency doubling and tripling processes, greater than 1.46 W 355 nm average output power was obtained under the absorbed pump power of 13.9 W and the repetition rate of 10 kHz. The corresponding pump-to-ultraviolet conversion efficiency was determined to be as high as 10.5%. At 10 kHz, the minimize pulse width was obtained to be 12 ns with the peak power of 10.4 kW and single pulse energy of 146 μJ.  相似文献   

14.
We report on the generation of mode-locking pulse trains with high average output powers from diode-pumped Tm-Ho:LiYF4 and Tm-Ho:BaY2F8 lasers emitting at around 2 μm. The highest output power of 365 mW was obtained with the Tm-Ho:YLF4 laser, whereas the shortest pulse duration of 120 ps and the widest tunability range of 59 nm was achieved with the Tm-Ho:BaY2F8 laser. PACS 42.55.Xi; 42.60.Fc; 42.72.Ai; 42.55.Rz; 42.70.Hj  相似文献   

15.
This paper reported a broadband tuning intracavity optical parametric oscillator (IOPO), based on the multiple grating periodical poled lithium niobate (PPLN) pumped by a acoustic-optical (AO) Q-switched Nd:YVO4 laser. The widely tunable OPO output signal wavelength range from 1390 to 1605 nm, which was obtained by changing PPLN poling period from 27.8 to 31.6 μm at a certain temperature of 46°C, while the continuous tuning range was measured from 1475 to 1592 nm with the PPLN poling period of 30 μm by varying the temperature of nonlinear crystal PPLN from 50 to 120°C. The maximum output power of 0.92 W at 1534 nm with the minimum pulse width of 5.17 ns was generated under the incident pump power of 9.6 W at 808 nm. The corresponding peak power and single pulse energy were calculated to be 5.94 kW and 30.7 μJ, respectively. The M 2-factor was measured to be 2.01 at the signal power of 0.4 W.  相似文献   

16.
We describe the output performances of the 930 nm 4 F 3/24 I 9/2 transition in Nd3+:YAlO3 (Nd:YAP) under in-band pumping with diode laser at the 803 nm wavelength. An end-pumped Nd:YAP crystal yielded 1.13 W of continuous-wave (CW) output power for 17.8 W of incident pump power. Moreover, intracavity second-harmonic generation has also been achieved with a power of 172 mW at 465 nm by using a LiB3O5 (LBO) nonlinear crystal. The blue beam quality factor M 2 was less than 1.3. The blue power stability was less 3% in 60 min.  相似文献   

17.
It is reported that efficient continuous-wave (CW) blue laser generation at 465 nm in a BiB3O6 (BiBO) crystal at type-I phase matching direction performed with a diode-pumped Nd3+:YAlO3 (Nd:YAP) laser. With incident pump power of 18.4 W, output power of 823 mW at 465 nm has been obtained using a 10 mm-long BiBO crystal. At the output power level of 823 mW, the output stability is better than 2.3%.  相似文献   

18.
We report an efficient generation of red light in a periodically-poled LiTaO3 (PPLT) crystal by extracavity single-pass frequency doubling of a diode-pumped, Q-switched Nd:YVO4 laser at 1342 nm. The sample used in the experiment is 20 mm in length and 14.77 μm in period. An average power of 840 mW of the 671 nm red light is obtained with a 808 nm pump of 12.3 W, the overall optical-to-optical efficiency being 6.8%. The measured effective nonlinear coefficient of the sample is ∼3.8 pm/V. The high conversion efficiency and output power demonstrate that the periodically-poled crystal serving as a frequency conversion device may be used in practice to construct an all-solid-state red laser based on an extracavity single-pass quasi-continuous scheme. Received: 17 September 2001 / Revised version: 23 January 2002 / Published online: 8 May 2002  相似文献   

19.
Z. C. Wu 《Laser Physics》2011,21(12):2068-2071
We report the efficient compact red laser at 670 nm generation by intracavity frequency doubling of a continuous wave laser operation of a diode pumped Nd:GdVO4 laser on the 4 F 3/24 I 13/2 transition at 1340 nm. An GdCa4O(BO3)3 (GdCOB) crystal, cut for critical type I phase matching at room temperature is used for second harmonic generation of the laser. At an incident pump power of 18.2 W, as high as 1.32 W of continuous wave (CW) output power at 670 nm is achieved with 15-mm-long GdCOB. The optical-to-optical conversion efficiency is up to 7.3%, and the fluctuation of the red output power was better than 3.5% in the given 30 min.  相似文献   

20.
We report a completely solid-state continuous-wave (CW) blue laser operating at 447 nm utilizing intracavity frequency tripling of an LD-side-pumped Nd:YAlO3 (Nd:YAP) laser operating at 1341.4 nm. An LBO crystal with type-I critical phase matching and a KTP crystal with type-II critical phase matching (CTM) were used for the second harmonic generation (SHG) and the third harmonic generation (THG), respectively. In view of the analysis of the cavity stability, a four-mirror folded cavity was designed and the output characteristics were theoretically analyzed. Experimental characteristics obtained were shown to be in agreement with the theoretical analysis. The maximum output power of the 447 nm CW blue laser reached 114 mW, which corresponds to a red-to-blue conversion efficiency of 9%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号