首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The transport of aromatic carboxylate compounds in the environment can be strongly influenced by adsorption onto certain minerals, such as iron oxides and hydroxides, found in ground water and soils. Batch experiments with five iron oxides were conducted to quantify the contributions to adsorption from different iron mineral surfaces and compare adsorption characteristics of selected organic acids (gentisic acid (GA) and 1-hydroxy-2-naphthoic acid (HNA)). Because of their widespread abundance in soils and sediments, goethite, lepidocrocite, ferrihydrite, hematite, and magnetite were investigated. Sorption of two organic acids onto iron oxides was examined over a wide range of conditions (pH, ionic strength, and sorbate concentration). Specific surface area and mineral surface charge proved be important for the adsorption of these compounds. The sorption isotherm was described well by the Tempkin equation for both organic acids, with the adsorption constant higher for HNA than GA. For modeling the sorption edges of ferrihydrite and hematite, surface reactions involving the formation of mononuclear (1:1) surface species were proposed. These results indicate that the generalized two-layer model, with the assumption of homogeneous surface sites, could predict sorption on iron oxides over a range of pH conditions. The results of this study suggest that the mineralogy of the iron oxides and the pH value should be considered when predicting sorption of aromatic acids onto iron oxides and their fate in the soil and the environment.  相似文献   

2.
This paper examined the application of attapulgite as an adsorbent for the removal of Pb(II) from heavy metal-contaminated water under various conditions. The sorption results indicated that the sorption of Pb(II) on attapulgite was strongly dependent on ionic strength at pH < 7.0. Outer-sphere surface complexation or ion exchange may be the main sorption mechanism of Pb(II) on attapulgite at low pH values. No drastic difference of Pb(II) sorption was observed at pH 7.0–10.0, and the sorption at pH > 10.0 was mainly dominated by inner-sphere surface complexation. The sorption of Pb(II) on attapulgite was affected by foreign ions in solution at pH < 7.0, and was not affected by foreign ions at pH > 7.0. The thermodynamic parameters (ΔH°, ΔS° and ΔG°) were evaluated from the temperature-dependent sorption isotherms, and the results indicated that the sorption process of Pb(II) on attapulgite was spontaneous and endothermic in nature.  相似文献   

3.
Six different methodological features of the batch sorption experiment were investigated using 152Eu, Kivetty granite, saline water with initial pH of 8.5, 9 and 10, [Eu]tot=5·10-7M, S:L = 1:20, pre-washing of granite, occasional shaking, centrifugation, wall sorption correction with separate tubes. This gave final Rd= 8.3±2.1, 7.3±2.6 and 8.6±3.7m3/kg at 6 months for each pH, respectively. Then [Eu]tot and S:L were varied, filtration was compared with centrifugation, separate tubes for wall sorption was compared with wall desorption, pre-washing of granite was compared with no washing and two shaking methods were compared. Two of the investigated methodological features gave too large apparent Rd due to: 1) filter sorption, and 2) low radiotracer concentration, leading to detection problems.  相似文献   

4.
The sorption properties of three titanosilicate materials, AM-4, ETS-4, and Na2Ti2O3SiO4 . 2H2O of different framework structure and cation exchange capacity were studied towards the uptake of uranium from aqueous systems. Selectivity factors were estimated by determining batch distribution coefficient (Kd) and uranium removal (mg) per gram of the exchanger as a function of contact time, uranium concentration and batch factor (solution volume to exchanger mass ratio). The difference in their ability to take up uranium was discussed by in terms of their framework structure and the determination of their cation exchange capacity. Comparisons to ETS-10 have been made.  相似文献   

5.
The kinetics of sorption of vapor over aqueous and aqueous-alcoholic solutions of potassium iodide and potassium iodine–iodide and over crystalline iodine onto chitosan powder or film was studied. The vapor diffusion coefficients in the initial and final sorption steps were calculated from the data obtained. For all the chitosan–sorbate vapor systems studied, the mass transfer relationships are not described by Fick’s law and are characterized by anomalous sorption kinetics. The properties of chitosan powder after the uptake of the sorbate vapor were evaluated by electronic and IR spectroscopy, X-ray diffraction, and differential thermal and thermal gravimetric analysis. Sorption of iodine-containing vapor onto the polymer is accompanied by complexation of the components. The iodine–chitosan complexes are stable in storage and resistant to heat treatment. The results obtained served as a basis for developing a procedure for preparing kinetically and thermally stable powdered iodinated chitosan derivatives.  相似文献   

6.
7.
The sorption of Pd(II) on hydroxyapatite (Ca10(PO4)6(OH)2) has been studied at 25 °C as a function of pH, in 0.01 M NaClO4, and 0.01 and 0.025 M Ca(ClO4)2 aqueous background electrolytes and Pd(II) concentration (9.3 to 47 ??M), trying to minimize some types of reactions, such as solid dissolution of and metal precipitation. The radiotracer palladium, 109Pd, obtained by neutron irradiation, has been used to calculate the palladium??s distribution coefficients K d between aqueous and solid phase. A mathematical treatment of results has been made by ion-exchange theory in order to interpret palladium sorption onto treated solid. For this, we take into account the existence of active sites at the hydroxyapatite surface, and the aqueous solution chemistry of palladium as well as the effect of phosphate anions from solid dissolution. The results can be explained as evidence of sorption of the species PdOH+, and of a mixed hydroxo complex of Pd2+ like (XCaO?)?CPdOH+·nH2O fixed onto {??Ca?COH} surface sites of the hydroxyapatite.  相似文献   

8.
New environmental friendly sorption materials were synthesized and studied to remove organic contaminants in wastewater purification. Humic acids extracted from green-waste compost (HAcomp) and from leonardite (HAleo) were chemically characterized by infrared spectroscopy, carbon nitrogen and hydrogen analysis, ash content, hydrophobicity tests, and molecular weight distribution. Humic acids were thermally immobilized at 330 °C for 1.5 h and their sorbent properties towards of some benzene derivatives (toluene, o-xylene, phenol, and benzyl alcohol) with the batch equilibrium method were studied. HAcomp was found to be less rich in aromatic rings and more hydrophobic than HAleo. The maximum amount of sorbate bound at the equilibrium was consistently higher for the immobilized HA from compost than from leonardite and increased with the n-octanol/water partition coefficient of the adsorbate. The data point to hydrophobic interactions as the main force involved in the sorption of the compounds tested. The results showed that these materials can have potential applications in wastewater purification.  相似文献   

9.
The composite ion exchangers were tested for their ability to remove UO2 2+ from aqueous solutions. Polyacrylonitrile (PAN) composites having natural zeolite, clinoptilolite, and synthetic zeolite, zeolite X, were used as an adsorbents. The influences of pH, U(VI) concentration, temperature and contact time on the sorption behavior of U(VI) were investigated in order to gain a macroscopic understanding of the sorption mechanism. The optimum adsorption conditions were determined for two composites. The sorption behaviors of uranium on both composites from aqueous systems have been studied by batch technique. Parameters on desorption were also investigated to recover the adsorbed uranium.  相似文献   

10.
The aim of this study is to understand the sorption of tributyltin (TBT) onto natural quartz sand by classical batch experiments and spectroscopic surface analyses. At pH<6, the major species of TBT is the cation TBT(+). Due to the presence of both the cationic part and the butyl chains, TBT should present amphiphilic properties. For concentrations lower than 40 microM, TBT sorption occurs as a homovalent 1:1 cation exchange between either H(+) or Na(+) and TBT(+). The increasing affinity of TBT with respect to the different materials follows the series kaolinite相似文献   

11.
In this study we investigated the sorption of selenite (SeO3 2?) onto chlorite as a function of Se(IV) concentration, pH, and ionic strength. The sorption isotherm of Se(IV) onto chlorite was successfully presented by both the Langmuir isotherm and Tempkin equation although the Langmuir isotherm is somewhat better than the Tempkin equation. The sorption of Se(IV) onto chlorite was maintained to be constant at an acidic pH region, while the sorption decreased with an increasing pH at neutral and alkaline pH regions. However, the Se(IV) sorption onto chlorite was independent of the ionic strength of NaClO4 solution. The amount of Se(IV) sorbed onto chlorite was significantly low compared to those of iron oxides such as apatite, goethite, hematite, and magnetite because of the lower content of Fe. We also investigated the effect of Fe(II) ions dissolved from chlorite on the Se(IV) sorption as a function of contact time. The chemical oxidation states of selenium sorbed onto chlorite surface were identified using X-ray absorption near edge structure (XANES) at the Pohang synchrotron light source. The amount of Fe(II) dissolved was increased by the contact time of 28 days but decreased after 28–56 days although the amount of dissolved Fe(II) ions was significantly small. This decrease of the dissolved Fe(II) may be due to the formation of Fe-oxyhydroxides such as ferrihydrite. The results of XANES measurements also showed that the Se(IV) sorbed onto chlorite was not reduced into Se(0) or Se(-II) even in the presence of Fe(II) ions in the solution because of the low Fe content of the chlorite although the mechanism was not clearly understood.  相似文献   

12.
Understanding sorption processes is fundamental for the prediction of radionuclide migration in the surroundings of a deep geological disposal of high-level nuclear wastes. Pyrite (FeS2) is a mineral phase often present as inclusions in temperate soils. Moreover, it constitutes an indirect corrosion product of steel, a containment material that is candidate to confine radionuclides in deep geological disposals. The present study was thus initiated to determine the capacity of pyrite to immobilize Sr(II) and Eu(III). An air oxidized pyrite and a freshly acid-washed (non-oxidized) pyrite were used in background electrolytes of varying reducing-oxidizing ability (NaCl, NH3OHCl, and NaClO4) to study the sorption of both cationic species. The sorptive capacity of pyrite appeared directly correlated to the oxidation of the surface. Non-oxidized pyrite had nearly no affinity for the studied cations whereas Sr(II) and Eu(III) species were significantly retained by oxidized pyrite surface. Using the surface complexation theory, sorption mechanisms were modeled with the Fiteql v3.2 and the Jchess 2.0 codes. Sorption of both Sr and Eu was well fitted, assuming hydroxylated species as the major surface species. This study demonstrates that not only the components of a barrier but also the redox conditions and specifications should be well characterized to predict transport of contaminants in the surrounding of a nuclear wastes disposal.  相似文献   

13.
Sorption behavior of Am(III) onto granite was investigated. The distribution coefficient (K d ) of Am(III) onto granite was determined in the solution of which pH was ranged from 2.9 to 11.4 and ionic strength was set at 10−2 and 10−1. TheK d values were found to increase with increasing pH and with decreasing ionic strength. The obtained data were successfully analyzed by applying an electrical double layer model. The optimum parameter values of the double layer electrostatics and adsorption reactions were obtained, and the selective adsorption behavior of Am(III) onto the granite was discussed.  相似文献   

14.
Two akaganeite materials were tested for the removal of antimonate, trimethyl antimonate, arsenate, arsenite, and dimethyl arsenate from water: a commercial product (GEH) and a synthesized akaganeite. The two materials show similar q(max) values, but differ in their K(L) values. This could be a result of their different crystal sizes indicated by sharper XRD reflections of the synthesized akaganeite compared with GEH. Batch experiments were carried out using all species to investigate the influence of the pH on their sorption onto the commercial material. The best results for the removal of antimonate and arsenate were achieved under acidic conditions, while the sorption of arsenite has an optimum at pH 7. The maximum loadings vary from 450 mg g(-1) (antimonate at pH 2.2.) to 2 mg g(-1) (trimethyl antimonate at pH 7). Competition reactions (up to a 10-fold excess of the competitor ion) were studied with antimonate, arsenate, and phosphate. The sorption capacity of arsenate decreases up to 12.5% by adding phosphate (ratio 1:10), but the addition of antimonate did not influence the sorption of arsenate. Conversely, the sorption of antimonate decreases due to the addition of 10-fold concentration of arsenate (31%) or phosphate (27%).  相似文献   

15.
Sorption of spruce acetylated galactoglucomannans (GGM) onto different pulps, among which unbleached and peroxide-bleached mechanical pulps, and unbleached and bleached kraft (BK) pulps, was studied as a means of understanding the retention of acetylated GGMs in mechanical pulping and papermaking. The fibre surface coverage of lignin and carbohydrates was estimated by X-ray photoelectron spectroscopy (XPS) or electron spectroscopy for chemical analysis (ESCA). GGM sorption was clearly favoured on kraft pulps. Hardly any differences in sorption were, however, observed between unbleached and BK pulps, even if the surface coverage of lignin was lower on the bleached pulp. Neither thermomechanical pulp (TMP) nor chemithermomechanical pulp (CTMP) manufactured from spruce sorbed any acetylated GGMs. Peroxide bleaching of the pulp did not increase sorption. Only CTMP produced from aspen sorbed some GGMs. The anionic charge of neither chemical nor mechanical pulps influenced GGM sorption.  相似文献   

16.
The sorption of Pu(VI) onto TiO(2) was studied as a function of pH (2-10) and Pu concentration (10(-8)-10(-4) M) under an N(2) atmosphere, in 0.016 and 0.1 M NaClO(4). A batch-wise method was used, in which pH was measured in separate experimental containers after removal of a sample to determine the amount of Pu that had been sorbed. As Pu is radioactive, it was used as a tracer and measured by liquid scintillation counting. No ionic strength dependence was discerned, which was taken as an indication of inner sphere complex formation. In the interval of pH 2-7 the system could be described by the formation of two positively charged surface complexes using a 1-pK Stern model. Sorption of the plutonyl ion (PuO(2)(2+)) and the first hydrolysis species (PuO(2)(OH)(+)) was estimated using FITEQL to logK(1)=6.9 and logK(2)=1.4, respectively.  相似文献   

17.
Surface sorption experiments of U(VI) onto the surfaces of a Korean granite rock are carried out in order to investigate the kinetics and reversibility of U(VI) sorption as a function of pH and surface types such as fresh intact surfaces and natural fracture surfaces. It was shown that the effect of pH is significant in the sorption of U(VI) onto both types of the granite surfaces. However the sorption rates do not greatly depend upon the pH regardless of the surface types. A two-step first order kinetic behavior dominates onto both the intact surfaces and natural fracture surfaces of granite and that the linearization approach of the kinetic model agrees well with experimental sorption data. The desorption results showed that the sorption process of U(VI) was a little irreversible for the two types of granite surfaces regardless of pH and surface types. This kinetic approach could give a better understanding of U(VI) sorption onto granite surfaces depending on pH and surface types. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Effect of the granulation process onto the thermodynamic and kinetic sorption parameters of two basic dyes (Basic Yellow 28-BY 28 and Basic Green 4-BG 4) was evaluated in the present work. The charge surface properties of the surfactant-modified aluminium-pillared clay (CTAB-Al-Mont-PILC) particles were not modified, and the isoelectric point remains constant after high shear wet granulation. The Gibbs free energy of both BY 28 and BG 4 sorption was negative and decreased with the granulation; the endothermic nature of the sorption process was confirmed by the positive values of ΔH°. Adsorption kinetics of the two dyes, studied at pH 6 and 150 mg L(-1), follow the pseudo-first order kinetic model with observed rate constants of 2.5-4.2×10(-2) min(-1). The intraparticle diffusion model, proposed by Weber and Morris, was applied, and the intraparticle plots revealed three distinct sections representing external mass transfer, intraparticle diffusion and adsorption/desorption equilibrium. Diffusion coefficients, calculated from the Boyd kinetic equation, increased with the granulation and the particle size. Pseudo-first order kinetic constants, intraparticle diffusion rate constants and diffusion coefficients were determined for two other initial concentrations (50 and 100 mg L(-1)) and include in a statistical study to evaluate the impact of granulation and initial concentration on the kinetic parameters. Kruskal-Wallis tests, Spearman's rank order correlation and factor analysis revealed a correlation between (i) the diffusion coefficients and granulation, and between (ii) the intraparticle diffusion rate constants and initial concentration.  相似文献   

19.
The surface sorption of Cm(III) onto aqueous suspensions of alumina is investigated by time-resolved laser fluorescence spectroscopy (TRLFS). The experiment is performed under an Ar atmosphere at an ionic strength of 0.1 M NaClO(4). The pH is varied between 2 and 10 and the metal ion concentration between 2.7x10(-8) and 4.5x10(-5) mol/L. With increasing pH, two Cm(III)-alumina surface species are identified which are attributed to identical withAl-O-Cm(2+)(H(2)O)(5) and identical withAl-O-Cm(+)(OH)(H(2)O)(4). The two curium-alumina surface complexes are characterized by their emission spectra (peak maxima at 601.2 nm and 603.3 nm, respectively) and fluorescence emission lifetime (both 110&mgr;s). In the concentration range investigated, the surface complex formation is not dependent on the metal ion concentration but only on the pH. Additionally, the concentration ratio of the two surface species is found to be independent of the metal ion concentration. No spectroscopic evidence for the presence of "strong" and "weak" sites can be found at different surface coverages. Copyright 2001 Academic Press.  相似文献   

20.
Journal of Radioanalytical and Nuclear Chemistry - Activated bentonite was obtained from acid activation and purification of raw bentonite, sorption of Th(IV) onto activated bentonite was studied...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号