首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 961 毫秒
1.
本文采用椭圆偏振光谱法研究了剂量为1×1016—3×1012cm-2的As+注入硅,及其在700℃退火后的光学性质。得出:当As+注入剂量增大到某一程度后,便呈非晶特性。低于临界剂量的样品,其n-λ,ε2-λ关系曲线随剂量的增大而往下方移动,呈有规律变化;退火后,在大于4000?波段,n-λ与ε2-λ曲线基本恢复到单晶硅状态。但在小于4000?的紫外区却未完全恢复,注入剂量越大,偏离单晶硅就越大。并指出,紫外光区是离子注入硅的信息敏感区;用有效质量模型计算出注入剂量与损伤度的关系。计算结果与实验符合得较好。 关键词:  相似文献   

2.
刘向绯  蒋昌忠  任峰  付强 《物理学报》2005,54(10):4633-4637
能量为200keV的Ag离子,以1×1016,5×1016,1×1017 cm-2的剂量分别注入到非晶SiO2玻璃,光学吸收谱显示:注入剂量为1×1016 cm-2的样品的光吸收谱为洛伦兹曲线,与Mie理论模拟的曲线形状一致;注入剂量较大的5×1016,1×1017 cm-2的谱线共振吸收增强,峰位红移并出现伴峰. 透射电镜观察分析表明,注入剂量不同的样品中形成的纳米颗粒的大小、形状、分布都不同,注入剂量较大的还会产生明显的表面溅射效应,这些因素都会影响共振吸收的峰形、峰位和峰强. 当注入剂量达到1×1017 cm-2时,Ag纳米颗粒内部可能还形成了杂质团簇. 关键词: 离子注入 纳米颗粒 共振吸收 红移  相似文献   

3.
范鲜红  陈波  关庆丰 《物理学报》2008,57(3):1829-1833
利用透射电子显微镜(TEM)详细分析了不同剂量的质子辐照纯铝薄膜样品的微观结构, 质子的能量E=160 keV.实验表明,质子辐照能够在Al薄膜中诱发空位位错圈,在实验范围内,位错密度随辐照剂量的增加而增加;质子辐照在1×1011—4×1011/mm2范围内随辐照剂量的增加,位错圈数量密度以及位错圈尺寸都随之增加.在较高剂量6×1011/mm2辐照下,位错圈数量密度减小,但其尺寸显著 关键词: 质子辐照 空位簇缺陷 位错圈 微观结构  相似文献   

4.
Mo/Si多层膜在质子辐照下反射率的变化   总被引:2,自引:0,他引:2       下载免费PDF全文
范鲜红  李敏  尼启良  刘世界  王晓光  陈波 《物理学报》2008,57(10):6494-6499
为了检验应用在极紫外波段空间太阳望远镜上Mo/Si多层膜反射镜在空间辐射环境下反射率的变化情况, 模拟了部分空间太阳望远镜运行轨道的辐射环境, 利用不同能量和剂量的质子对Mo/Si多层膜反射镜进行辐照实验.辐照前后反射率测量结果显示,由于带电粒子的辐照损伤,质子辐照会使Mo/Si多层膜反射镜的反射率降低,且质子能量越低、剂量越大,对多层膜的反射率影响越明显. 当质子能量E=160keV,剂量=6×1011/mm2时,反射率降低4.1%;能量E=100keV,剂量=6×1011/mm2时, 反射率降低5.7%;能量E=50keV,剂量=8×1012/mm2时,反射率降低10.4%. 用原子力显微镜测量辐照后Mo/Si多层膜反射镜的表面粗糙度比辐照前明显增加,致使散射光线能量逐渐增大并最终导致反射率的降低. 关键词: 质子辐照 Mo/Si多层膜反射镜 辐照损伤  相似文献   

5.
SiC埋层的制备及其红外吸收特性   总被引:3,自引:0,他引:3       下载免费PDF全文
严辉  陈光华  黄世平  郭伟民 《物理学报》1997,46(11):2274-2279
采用metal vapor vacuum arc离子源的离子束合成方法,对单晶Si衬底注入C离子,获得不同剂量下的SiC埋层.C离子束的引出电压为50kV,注入的剂量为3.0×1017—1.6×1018cm-2.通过红外吸收谱的测试和分析,表明SiC埋层的结晶程度依赖于剂量的大小.研究证实,可以在较低的平均衬底温度下(低于400℃)得到含立方相结构的SiC埋层. 关键词:  相似文献   

6.
α-Al2O3∶C单晶具有优良的热释光特性,被用做热释光剂量计,但α-Al2O3∶C晶体剂量计的形状不易加工,生产成本高且碳在晶体中难以掺杂均匀。采用低温燃烧合成法以无水乙醇为溶剂,尿素为染料,硝酸铝为反应物制备少团簇、分散均匀的片状α-Al2O3∶C陶瓷粉体。探讨不同点火温度和不同退火温度对其光致发光特性的影响,不同退火温度对热释光特性的影响以及热释光与辐射剂量(90Sr β)的关系。通过分析α-Al2O3∶C陶瓷粉体的光致发光光谱得出:α-Al2O3∶C陶瓷粉体的发射波长在395 nm附近,点火温度T≤800℃时,点火温度为500 ℃制备的α-Al2O3∶C陶瓷粉体的光致发光强度最强;在相同点火温度T=500 ℃下,经不同温度退火制备α-Al2O3∶C陶瓷粉体,点火温度为500 ℃制备的α-Al2O3∶C陶瓷粉体经1 000 ℃退火后光致发光强度最强。通过分析α-Al2O3∶C陶瓷粉体的热释光曲线得出:退火后的α-Al2O3∶C陶瓷粉体在200 ℃左右的热释光峰值占主导,900 ℃退火的α-Al2O3∶C陶瓷粉体在200 ℃附近的热释光峰值最强;通过峰高法对900 ℃高温退火处理后的α-Al2O3∶C陶瓷粉体位于200 ℃左右的热释光峰做剂量响应曲线,可以看出,在1~50 Gy剂量范围内具有良好的热释光剂量线性响应关系,在50~200 Gy剂量范围内出现超线性响应关系。与α-Al2O3∶C晶体(1~10 Gy)和多孔Al2O3∶C薄膜(1~10 Gy)相比,α-Al2O3∶C陶瓷粉体的线性剂量响应范围明显扩大。此研究可为提高氧化铝陶瓷粉体的热释光性能提供思路。  相似文献   

7.
彭德全  白新德  潘峰  孙辉 《物理学报》2005,54(12):5914-5919
用金属蒸汽真空弧源,以40kV加速电压对纯锆样品分别进行了1016—1017/cm2的钇、镧离子注入,注入温度约为130℃.然后对注入样品进行表面分析.x射线光电子能谱分析表明,注入的钇以Y2O3形式存在,镧以La2O3形式存在.俄歇电子能谱表明,纯锆基体表面的氧化膜厚度随着离子注入剂量的增加而增加,当离子注入剂量达到1017/cm2时,氧化膜的厚度达到了最大值.卢瑟福背散射显示镧层的厚度约为30nm,同时直接观察到当离子注入剂量为(La+Y)1017/cm2时,纯锆样品表面发生了严重的溅射. 关键词: 纯锆 钇和镧离子共注入 卢瑟福背散射 x射线光电子能谱  相似文献   

8.
27keV Ar离子束沿法向分别入射在BaF2单晶(111),(100)和(110)的晶面上,用捕获器方法和Rutherford背散射分析法测定了Ba原子的溅射角分布和溅射产额。结果发现不同取向的晶体表面,它们的溅射产额有明显差异。当用剂量为5×1017ion/cm2的Ar离子分别轰击这三种晶面时,其溅射产额的顺序Y100>y111>y110.对已被上述剂量辐照过的晶面再作相同剂量轰击时,测得的溅射产额明显增大。这些结果被认为是由于在离子辐照过程中表面晶格受损逐步增大所致。 关键词:  相似文献   

9.
详细研究了注氮n型GaAs中深的和浅的杂质缺陷的电学性质。深能级瞬态谱(DLTS)技术测量表明,能量为140keV和剂量为1×1013cm-2的氮离子注入并经800℃退火30min的GaAs中存在四个电子陷阱,E1(0.111),E2(0.234),E3(0.415),E4(0.669)和一个空穴陷阱H(0.545),而在能量为20keV和剂量为5×1014关键词:  相似文献   

10.
通过电子束蒸发方法以及高温退火处理,得到nc-Si/SiO2超晶格。将样品分别注入剂量为2.0×1014 cm-2和2.0×1015 cm-2的Ce3+,再对其进行二次退火处理,获得多组样品。通过对样品光致发光光谱的分析发现,样品发光强度的变化不仅受到Ce3+注入剂量的影响,而且也受到nc-Si颗粒大小的影响。在相同注入计量和相同的二次退火处理温度下,nc-Si颗粒较大的样品经Ce3+注入后其发光强度增强较为明显。  相似文献   

11.
用闪光蒸镀法在77K制备了NdxFe1-x(x=0.06-0.80)非晶薄膜,原位测定了其电阻随温度的变化。结果表明:在0.192和ρ(T)∝T。晶化不是在一个固定的温度,而是在一个温度区间发生。  相似文献   

12.
When spreading dilute solutions of isotactic polystyrene (iPS) on water, it was observed that different concentrations produce different morphologies in the resulting amorphous films. From 10?1 to 10?2 wt% solutions, ribbonlike films and circular platelets of multimolecule aggregates were obtained. After isothermal crystallization of these amorphous films, lamellae, incipient spherulites, and single-molecule crystals were observed. The formation of lamellar crystals lying flat on the substrate is an indication of the absence of epitaxy by the substrate, which would require the molecular chains to be in the surface plane and thus yield lamellae normal to the substrate. The dense packing in the center of sheaflike spherulites is caused by screw-dislocation growth, and it produces structures similar to shish kebabs. It was also observed that the lamellae grown from the center develop secondary growth spirals, causing the branching and splaying of the structure typical for spherulitic growth.  相似文献   

13.
In this paper, results of structural modification of fullerene thin films by single and multiple charged boron ions (B+, B3+) are presented. The applied ion energies were in the range of 15-45 keV. The characterization of as-deposited and irradiated specimens has been performed by atomic force microscopy, Raman and Fourier transform infrared spectroscopy and UV/vis spectrophotometry. The results of Raman analysis have shown the formation of amorphous layer after irradiation of fullerene thin films. Fourier transform infrared spectroscopy has confirmed the formation of new B-C bonds in irradiated films at higher fluences (2 × 1016 cm−2). The morphology of bombarded films has been changed significantly. The optical band gap was found to be reduced from 1.7 to 1.06 eV for irradiated films by B3+ ions and 0.7 eV for irradiated films by B+ ions.  相似文献   

14.
Dense Si nano-dots with a surface area density of >1010 cm?2 were fabricated by excimer laser induced crystallization of 15 nm-thick amorphous Si thin films. The enhanced electron field emission characteristics were found from laser irradiated samples. The threshold electric field is as low as 9.8V/μm and the field enhancement factor can reach as large as 719, which is compatible with the other good cold cathode materials. The improvements in field emission behavior can be associated with the change in the surface morphology after laser irradiation as well as the enhanced internal electric field due to the formation of Si nano-dots within the films.  相似文献   

15.
Diamond-like carbon (DLC) films were fabricated by pulsed laser ablation of a liquid target. During deposition process the growing films were exited by a laser beam irradiation. The films were deposited onto the fused silica using 248 nm KrF eximer laser at room temperature and 10−3 mbar pressure. Film irradiation was carried out by the same KrF laser operating periodically between the deposition and excitation regimes. Deposited DLC films were characterized by Raman scattering spectroscopy. The results obtained suggested that laser irradiation intensity has noticeable influence on the structure and hybridization of carbon atoms deposited. For materials deposited at moderate irradiation intensities a very high and sharp peak appeared at 1332 cm−1, characteristic of diamond crystals. At higher irradiation intensities the graphitization of the amorphous films was observed. Thus, at optimal energy density the individual sp3-hybridized carbon phase was deposited inside the amorphous carbon structure. Surface morphology for DLC has been analyzed using atomic force microscopy (AFM) indicating that more regular diamond cluster formation at optimal additional laser illumination conditions (∼20 mJ per impulse) is possible.  相似文献   

16.
Amorphous copper-doped ZnO thin films (ZnO:Cu) prepared on glass substrates by the radio-frequency magnetron co-sputtering have been investigated. Magnetic measurements indicated that the amorphous ZnO:Cu thin films were ferromagnetic at room temperature and the saturation magnetization was much higher than that of the polycrystalline films. X-ray diffraction results showed there was no Cu2O phase in amorphous ZnO:Cu films, which might be the reason for the high magnetic moment of the films. On the other hand, the high saturation magnetization of the amorphous ZnO:Cu films could also attribute to that there was no limit of solid solubility of Cu in amorphous ZnO solvent. The X-ray photoelectron spectroscopy study of the amorphous ZnO:Cu thin films reveal that copper was in Cu2+ chemical state.  相似文献   

17.
Thermal annealing-induced recrystallisation in Fe ion-implanted Si was investigated by transmission electron microscopy. Single crystals of Si(111) were implanted with 120 keV Fe ions to a fluence of 1.0×1017 cm-2 at cryogenic temperature. A buried amorphous Fe-Si layer in an amorphous Si matrix was formed in the as-implanted sample. Nanobeam electron diffraction revealed that metastable α-FeSi2 precipitates embedded in the amorphous Si matrix were formed after annealing at 350 °C for 8 h. The formation of this α-FeSi2-derived phase was unusual, because it has been observed only in epitaxially grown thin films. Based on the Fe1-xSi (0<x<0.5) phase with the CsCl structure, which is another metastable phase in the Fe-Si binary system, we discuss the formation process of the metastable α-FeSi2 in the amorphous matrix. PACS 61.43.Dq; 61.14.Lj; 61.80.Jh  相似文献   

18.
At 300 K, an amorphous Al-oxide film is formed on NiAl(001) upon oxygen adsorption. Annealing of the oxygen-saturated NiAl(001) surface to 1200 K leads to the formation of thin well-ordered θ-Al2O3 films. At 300 K, and low-exposure oxygen atoms are chemisorbed on CoGa(001) on defects and on step edges of the terraces. For higher exposure up to saturation, the adsorption of oxygen leads to the formation of an amorphous Ga-oxide film. The EEL spectrum of the amorphous film exhibits two losses at ≈400 and 690 cm-1. After annealing the amorphous Ga-oxide films to 550 K thin, well-ordered β-Ga2O3 films are formed on top of the CoGa(001) surface. The EEL spectrum of the β-Ga2O3 films show strong Fuchs-Kliewer (FK) modes at 305, 455, 645, and 785 cm-1. The β-Ga2O3 films are well ordered and show (2×1) LEED pattern with two domains, oriented perpendicular to each other. The STM study confirms the two domains structure and allows the determination of the two-dimensional lattice parameters of β-Ga2O3. The vibrational properties and the structure of β-Ga2O3 on CoGa(001) and θ-Al2O3 on NiAl(001) are very similar. Ammonia adsorption at 80 K on NiAl(111) and NiAl(001) and subsequent thermal decomposition at elevated temperatures leads to the formation of AlN. Well-ordered and homogeneous AlN thin films can be prepared by several cycles of ammonia adsorption and annealing to 1250 K. The films render a distinct LEED pattern with hexagonal [AlN/NiAl(111)] or pseudo-twelve-fold [AlN/NiAl(001)] symmetry. The lattice constant of the grown AlN film is determined to be aAlN= 3.11 Å. EEL spectra of AlN films show a FK phonon at 865 cm-1. The electronic gap is determined to be Eg= 6.1±0.2 eV. GaN films are prepared by using the same procedure on the (001) and (111) surfaces of CoGa. The films are characterized by a FK phonon at 695 cm-1 and an electronic band gap Eg= 3.5±0.2 eV. NO adsorption at 75 K on NiAl(001) and subsequent annealing to 1200 K leads to the formation of aluminium oxynitride (AlON). An oxygen to nitrogen atomic ratio of ≈2:1 was estimated from the analysis of AES spectra. The AlON films shows a distinct (2×1) LEED pattern and the EEL spectrum exhibits characteristic Fuchs-Kliewer modes. The energy gap is determined to be Eg= 6.6±0.2 eV. The structure of the AlON film is derived from that of θ-Al2O3 formed on NiAl(001). Received: 21 March 1997/Accepted: 12 August 1997  相似文献   

19.
The effect of a nanosecond laser irradiation of thin (60 and 145 nm) amorphous, diamond-like carbon films deposited on Si substrate by an ion beam deposition (IBD) from pure acetylene and acetylene/hydrogen (1:2) gas mixture was analyzed in this work. The films were irradiated with the infrared (IR) and ultraviolet (UV) radiation of the nanosecond Nd:YAG lasers working at the first (1.16 eV) and the third (3.48 eV) harmonics, using a multi-shot regime. The IR laser irradiation stimulated a minor increase in the fraction of sp2 bonds, causing a slight decrease in the hardness of the films and initiated SiC formation. Irradiation with the UV laser caused the formation of carbides and increased hydrogenization of the Si substrate and the fraction of sp2 sites. Spalliation and ablation were observed at a higher energy density and with a large number of laser pulses per spot.  相似文献   

20.
Amorphous-carbon (a-C) films were deposited on a single-crystal silicon substrate by vacuum vapor deposition system and these amorphous carbon films were implanted with 110 keV C+ at fluences of 1 × 1017 ions/cm2. The effect of ion mixing on the surface morphology, friction behavior and adhesion strengths of amorphous carbon films was examined making use of atomic force microscopy (AFM), ball-on-disk reciprocating friction tester, nano-indentation system and scanning electron microscope (SEM). The changes in chemical composition and structure were investigated by using X-ray photoelectron spectroscopy (XPS). The results show that the anti-wear life and adhesion of amorphous carbon films on the Si substrates were significantly increased by C ion implantation. The SiC chemical bonding across the interface plays a key role in the increase of adhesion strength and the anti-wear life of amorphous carbon film. The friction and wear mechanisms of amorphous carbon film under dry friction condition were also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号