首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Complexes of Pd(II) with aminobutyric acid AmH = NH2CH(CH2CH3)COOH, namely, trans-[Pd(AmH)2Cl2] with monodentate (via the NH2 group) AmH ligands and cis-, trans-Pd(Am)2 with bidentate (via NH2 and COO groups) ligands have been synthesized for the first time. Elemental analysis and IR and NMR spectroscopy were used to identify the synthesized compounds. The NMR spectra of the Pd(II) complexes were interpreted by comparing them with the NMR spectra of the analogous complexes of Pt(II). For Pt(II) and Pd(II) complexes with aminobutyric acid used as examples, an approach to identification of diastereomer bis-aminoacid complexes in specimens with racemic aminoacids by NMR spectroscopy is demonstrated.  相似文献   

2.
Summary The platinum(II) halidecis-[Pt(DMTC)(DMSO)X2] andcis-[Pt(DETC)(DMSO)X2](X=Cl or Br; DMSO=dimethyl sulfoxide; DMTC=EtOSCN-Me2; DETC=EtOSCNEt2) adducts and the platinum(II) and palladium(II) halide adducts,trans-[M(DETC)2X2] (M=Pt or Pd; X=Cl or Br), have been prepared. The complexes were characterized by i.r., and1H and13Cn.m.r. spectroscopy. Both DMTC and DETC coordinate through the sulphur atoms. The 1:2 DETC complexes present the usualtrans configuration, whereas the presence of DMSO favourscis geometry in the mixed species.  相似文献   

3.
Summary The following palladium(II) and platinum(ll) complexes of rhodanine (HRd) and 3-methylrhodanine (MRd) have been prepared: Pd(HRd)1.5Cl2, Pd(HRd)2Br2, Pd(HRd)2Br2 · 0.25 EtOH, M(MRd)2X2 [M = Pd, X = Cl (0.25 EtOH) or Br; M = Pt, X = Cl or Br], Pd(MRd)3Br2, and M(MRd)4(ClO4)2 (M = Pd or Pt). The ligands are coordinated to the metal through the thiocarbonylic sulphur atom. Pd(HRd)1.5Cl2 has presumably a structure such as (X = Cl or Br) complexes have a trans-planar coordination. Pd(MRd)2X2 (X = Cl or Br) complexes arecis-planar coordinated. Pd(MRd)3Br2 has presumably a square coordination with two MRd molecules and two CI ionscis-coordinated in the equatorial plane, and a MRd molecule and a Cl ion weakly bonded in apical position. The M(MRd)4(ClO4)2 complexes have square planar coordination.Author to whom all correspondence should be addressed.  相似文献   

4.
Summary Two ditertiaryarsines,o-phenylenebis(diphenylarsine), (pdpa) ando-phenylenebis(di-p-tolylarsine), (pdta) yield some new complexes of palladium(II) and platinum(II). These are: square planar M(pdta)X2 · nCH2Cl2, [M = Pd, X = Cl, Br or NCS; M = Pt, X = Cl]; [Pt(A-A)2] X2 · nCH2Cl2, [(A-A) = pdta, X = Cl, NCS or ClO4; (A-A) = pdpa, X=ClO4] and [M2(A-A)2(NCS)2] (ClO4)2 · nCH2Cl2, [M = Pd, (A-A) = pdta; M = Pt, (A-A) = pdpa]; distorted octahedral M(pdta)2-X2nCH2Cl2, [M = Pd, X = I; M = Pt, X = Br or I] and [Pd(pdta)2(H2O)2](ClO4)2, and five coordinate [M(A-A)2X] ClO4 · nCH2Cl2, [M = Pd, Pt, (A-A) = pdta, X = I; M = Pt, (A-A) = pdpa, X = Br or I]. The [M2(A-A)2(NCS)2] (ClO4)2 · nCH2Cl2 complexes are novel in the sense that they contain bridging thiocyanate together with ionic perchlorate. The stereochemical assignments have been made on the basis of i.r. and u.v. spectra as well as conductance data.  相似文献   

5.
There have been synthesized Pt(II) stereoisomeric complexes with hydroxy-α-amino acid serine (SerH = NH2CH(CH2OH)COOH is α-amino-β-hydroxypropionic acid): trans-[Pt(S-SerH)2Cl2], trans-[Pt(R-SerH)(S-SerH)Cl2] with monodentately (through NH2 group ) bound SerH and cis-, trans-[Pt(R-Ser)(S-Ser)], trans-[Pt(S-Ser)2] with bidentately bound (through groups NH2 and COO) ligands (R, S is the absolute configuration of asymmetric carbon atom). The successive phases in the synthesis of Pt(II) stereoisomeric complexes with serine were studied by 195Pt NMR spectroscopy. To identificate the compounds synthesized the method of elemental analysis, IR and NMR (195Pt, 13C, 1H) spectroscopy were used. For trans-[Pt(R-Ser)(S-Ser)] the X-ray diffraction data were obtained.  相似文献   

6.
Reaction of 3-methoxycarbonyl-2-methyl- or 3-dimethoxyphosphoryl-2-methyl-substituted 4-oxo-4H-chromones 1 with N-methylhydrazine resulted in the formation of isomeric, highly substituted pyrazoles 4 (major products) and 5 (minor products). Intramolecular transesterification of 4 and 5 under basic conditions led, respectively, to tricyclic derivatives 7 and 8. The structures of pyrazoles 4a (dimethyl 2-methyl-4-oxo-4H-chromen-3-yl-phosphonate) and 4b (methyl 4-oxo-2-methyl-4H-chromene-3-carboxylate) were confirmed by X-ray crystallography. Pyrazoles 4a and 4b were used as ligands (L) in the formation of ML2Cl2 complexes with platinum(II) or palladium(II) metal ions (M). Potassium tetrachloroplatinate(II), used as the metal ion reagent, gave both trans-[Pt(4a)2Cl2] and cis-[Pt(4a)2Cl2], complexes with ligand 4a, and only cis-[Pt(4b)2Cl2] isomer with ligand 4b. Palladium complexes were obtained by the reaction of bis(benzonitrile)dichloropalladium(II) with the test ligands. trans-[Pd(4a)2Cl2] and trans-[Pd(4b)2Cl2] were the exclusive products of these reactions. The structures of all the complexes were confirmed by IR, 1H NMR and FAB MS spectral analysis, elemental analysis and Kurnakov tests.  相似文献   

7.
Physicochemical study of cis-[Pt(NH3)2Cl2] and cis-[Pt(NH3)2Cl2(OH)2] is carried out, and immobilization of platinum complexes on the nanoporous carbon substrate is investigated. The solubility of cis-[Pt(NH3)2Cl2] in 1 M HCl solution is determined, and the average enthalpy of dissolution is calculated: ΔsolH° = 27.3 ± 0.9 kJ/mol. The batch capacity is determined experimentally for cis-[Pt(NH3)2Cl2] and cis- [Pt(NH3)2Cl2(OH)2] to be 32.9 mg/g (0.17 mg-equiv/g) and 47.6 mg/g (0.24 mg-equiv/g), respectively. Immobilization of platinum complexes on the oxidized carbon surface is found to take place due to interaction between carboxy groups and ammine groups of platinum complexes. The resulting heat capacity curves are used to calculate the enthalpies of adsorption for cis-[Pt(NH3)2Cl2] and cis-[Pt(NH3)2Cl2(OH)2] on the oxidized carbon surface, equal to 24.46 and 27.46 kJ/mol, respectively.  相似文献   

8.
The reaction of [Pt(PEt3)3] with CH2I2 affords trans-[Pt(CH2PEt3)I(PEt3)2]I and is believed to proceed via the α-functionalised alkyl cis-[Pt(CH2I)I(PEt3)2], because similar ylides are obtained from cis- or trans-[PT(CH2X)(PPh3)2X] (XCl, Br, or I) with PR3 (PEt3, PBu3n, PMePh2, PEtPh2, or PPh3); cis-[Pd(CH2I)-I(PPh3)2] does not react with excess PPh3, but with PEt3 yields trans-[Pd(CH2PEt3)I(PPh3)2]I; the X-ray structure of trans-[Pt(CH2PEt3)I(PEt3)2]I (current R = 0.045) shows PtP(1) 2.332(7), PtP(2) 2.341(8), PtC 2.08(2), and PtI 2.666(2) Å, and angles (a) C(1)PtI, P(1), P(2): 176.9(8), 91.6(6), 93.4(6), (b) IPtP(1), P(2): 87.1(2), 88.5(2), and (c) P(1)P(2), 166.8(3), and (d) PtC(1)P(3), 118(1)°.  相似文献   

9.
The dithioether, 1,12-bis(phenylthio)dodecane (dpd) reacts with tetrachloropalladate(II) and tetrachloroplatinate(II) in ethanol/dichloromethane to form trans-[M(dpd)Cl2] (M  Pd, Pt); trans-[Pd(dpd)Br2] has also been isolated. These are the first reported complexes which contain a trans-chelating bidentate ligand involving sulphur donors and is thus further evidence that bulky terminal substituents are not a prerequisite for trans chelation.  相似文献   

10.
Stereoisomeric Pt(IV) complexes with threonine (ThrH = HOCH(CH3)CH(NH2)COOH, ??-amino-??-hydroxybutyric acid) were obtained. In the complexes trans-[Pt(S-ThrH)2Cl4] and trans-[Pt(R-ThrH)(S-ThrH)Cl4], the ThrH molecules act as monodentate ligands coordinated through the NH2 group. In the complexes cis- and trans-[Pt(S-Thr)2Cl2] and trans-[Pt(R-Thr)(S-Thr)Cl2], the deprotonated ligands are coordinated in a bidentate fashion through the NH2 and COO?-groups (R,S is the absolute configuration of the asymmetric carbon atom). All the complexes were identified using elemental analysis, IR spectroscopy, and 195Pt, 13C, and 1H NMR spectroscopy. The complexes trans-[Pt(S-ThrH)2Cl4] · 3H2O and cis-[Pt(S-Thr)2Cl2] · 2H2O were additionally characterized by X-ray diffraction.  相似文献   

11.
1H, 13C and 15N NMR studies of gold(III), palladium(II) and platinum(II) chloride complexes with picolines, [Au(PIC)Cl3], trans‐[Pd(PIC)2Cl2], trans/cis‐[Pt(PIC)2Cl2] and [Pt(PIC)4]Cl2, were performed. After complexation, the 1H and 13C signals were shifted to higher frequency, whereas the 15N ones to lower (by ca 80–110 ppm), with respect to the free ligands. The 15N shielding phenomenon was enhanced in the series [Au(PIC)Cl3] < trans‐[Pd(PIC)2Cl2] < cis‐[Pt(PIC)2Cl2] < trans‐[Pt(PIC)2Cl2]; it increased following the Pd(II) → Pt(II) replacement, but decreased upon the transcis‐transition. Experimental 1H, 13C and 15N NMR chemical shifts were compared to those quantum‐chemically calculated by B3LYP/LanL2DZ + 6‐31G**//B3LYP/LanL2DZ + 6‐31G*. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
The series of cis/trans-trifluoromethylselenato complexes [Pt(SeCF3)2 − xClx(PPh3)2] (x = 0, 1) was identified by NMR spectroscopic methods. While in acetonitrile solution spectra are dominated by the resonances of the cis derivatives, those of pure cis-[Pt(SeCF3)2(PPh3)2] indicate cis-trans-isomerisation in CH2Cl2 solution. In contrast, exchange reactions of cis-[PtCl2(PPh3)2] and [NMe4]TeCF3 only gave evidence for cis isomers. Molecular structures of cis- and trans-[Pt(SeCF3)2(PPh3)2] and cis-[Pt(TeCF3)2(PPh3)2] are discussed in comparison with related compounds.  相似文献   

13.
Sodium thiosulfate has been utilized as a rescuing agent for relief of the toxic effects of cisplatin and carboplatin. In this work, we characterized the kinetics of reactions of the trans-dichloro-platinum(IV) complexes cis-[Pt(NH3)2Cl4], ormaplatin [Pt(dach)Cl4] and trans-[PtCl2(CN)4]2? (anticancer prodrugs and a model compound) with thiosulfate at biologically important pH. An overall second-order rate law was established for the reduction of trans-[PtCl2(CN)4]2? by thiosulfate, and varying the pH from 4.45 to 7.90 had virtually no influence on the reaction rate. In the reactions of thiosulfate with cis-[Pt(NH3)2Cl4] and with [Pt(dach)Cl4], the kinetic traces displayed a fast reduction step followed by a slow substitution involving the intermediate Pt(II) complexes. The reduction step also followed second-order kinetics. Reductions of cis-[Pt(NH3)2Cl4] and [Pt(dach)Cl4] by thiosulfate proceeded with similar rates, presumably due to their similar configurations, whereas the reduction of trans-[PtCl2(CN)4]2? was about 1,000 times faster. A common reduction mechanism is suggested, and the transition state for the rate-determining step has been delineated. The activation parameters are consistent with transfer of Cl+ from the platinum(IV) center to the attacking thiosulfate in the rate-determining step.  相似文献   

14.
The stoichiometric reaction of cis-[Pd(ITMe)2(SiR3)2], where (SiR3 = SiMe3 and SiMe2Ph and ITMe = 1,3,4,5-tetramethylimidazol-2-ylidene) with allyl bromide affords the corresponding allylsilanes along with complexes of the type trans-[Pd(ITMe)2(SiR3)(Br)]. The structure of trans-[Pd(ITMe)2(SiMe2Ph)Br] 2b has been determined in the solid state and displays a slightly distorted square-planar geometry with the two N-heterocyclic carbene ligands in a trans-configuration.  相似文献   

15.
Complexes of the type M(PPh3)2(PbPh3)2 [M = Pd, (Ia) and Pt, (Ib)] have been prepared by oxidative addition of hexaphenyldilead to M(PPh3)4. The compound Pt(PPh3)2(PbPh3)2, (Ib), slowly decomposes in dichloromethane to give cis-Pt(PPh3)2(PbPh3)Ph, (II). which can also be obtained by treating (Ib) with the stoichiometric amount of LiPh. Reaction of Pt(PPh3)4 with hexamethyldidead gives the complex Pt(PPh3)2(PbMe3)Me directly.The MPb bonds are easily cleaved by bromine, iodine and hydrogen bromide. The X-ray structure of (II) has been determined using three-dimensional counter data and refined by the least-square method (R = 0.07). The crystals are monoclinic a = 22.501, b = 10.502, c = 24.120 Å, β = 113.43°, space group P21/c with Z = 4. The complex exhibits a cis configuration, with the coordination around the platinum atom essentially square-planar: the PtPb and PtC(phenyl)bond lengths are 2.698(1) and 2.055(3)Å, respectively.  相似文献   

16.
Dinuclear Palladium(II), Platinum(II), and Iridium(III) Complexes of Bis[imidazol‐4‐yl]alkanes The reaction of bis(1,1′‐triphenylmethyl‐imidazol‐4‐yl) alkanes ((CH2)n bridged imidazoles L(CH2)nL, n = 3–6) with chloro bridged complexes [R3P(Cl)M(μ‐Cl)M(Cl)PR3] (M = Pd, Pt; R = Et, Pr, Bu) affords the dinuclear compounds [Cl2(R3P)M–L(CH2)nL–M(PR3)Cl2] 1 – 17 . The structures of [Cl2(Et3P)Pd–L(CH2)3L–Pd(PEt3)Cl2] ( 1 ), [Cl2(Bu3P)Pd–L(CH2)4L–Pd(PBu3)Cl2] ( 10 ), [Cl2(Et3P)Pd–L(CH2)5L–Pd(PEt3)Cl2] ( 3 ), [Cl2(Et3P)Pt–L(CH2)3L–Pt(PEt3)Cl2] ( 13 ) with trans Cl–M–Cl groups were determined by X‐ray diffraction. Similarly the complexes [Cl2(Cp*)Ir–L(CH2)nL–Ir(Cp*)Cl2] (n = 4–6) are obtained from [Cp*(Cl)Ir(μ‐Cl)2Ir(Cl)Cp*] and the methylene bridged bis(imidazoles).  相似文献   

17.
Several trans-hydridomethylbis(phosphine)-platinum(II) and -palladium(II) complexes have been made by the reaction: trans-M(H)Cl(PR3)2 + CH3MgBr → trans-M(CH3)(PR3)2 + MgClBr and their structures determined by 1H NMR and IR spectroscopy. The complexes in which M  Pt and R  Cy (cyclohexyl) or i-Pr (isopropyl) are very stable in the solid state and in solution, while the compounds in which M  Pt, R  Et (ethyl) and M  Pd, R  i-Pr slowly decompose either in the solid state or in solution. The compound in which M  Pd and R  Cy was not isolated but was identified in solution.  相似文献   

18.
Tetracloro-o-benzoquinone reacts with (diphenylacetylene)bis(tirphenylphosphine)platinum(0) to give the novel platinum(II) diphenylacetylene complex, Pt(C6Cl4O2)PhCCPh)(PPh3), (I), which reacts with hydrogen halides to give the compelexes cis-PtX2(PhCCPh((PPh3), (X = Cl or Br). Hydrogen chloride also readily removes the tetrachloro-o-benzoquinoneligand from the adducts Ni(C6Cl4O2)(Ph2PCH2CH2PPh2) and M(C6Cl4O2)(PPh3)2, (M = Pd or Pt) but it has no reaction upon Ir(Cl)(C6Cl4O2)(CO)(PPh3)2 at room temperature. The acetylene in (1) is susceptible to nucleophilic attact and reaction with diethylamine gives the vinyl adduct Pt(C6Cl4O2)(CPhCPh)NHEt2)(PPh3). Other reactions of (I) have also been studied. Attemps to prepare other olefin or acetylene complexes of platinum(II) by the action of tetrachlor-o-benzoquinone on the complexes Pt(L)(PPh3)2, (L = PhCCH,(Et)(Me)(HO)CCCC(OH)(Me)(Et), HOCH2OH, CF3CCCF3, CF2CF2, CF2CH2 or trans-PhCHCHPh) are also described.  相似文献   

19.
The reactions of cis-(NH3)2PtL2 (L = 1-MeT or 1-MeU, the anions of 1-methylthymine or 1-methyluracil respectively) in water with various salts of Fe(II), Fe(III), Co(II), Ni(II), Cu(II) or Ag(I) have produced 14 new heteronuclear complexes of the general types: cis-[(NH3)2PtL2ML2Pt(NH3)2]Xn·mH2O or cis-(NH3)2PtL2MXn·mH2O, and also with silver(I) perchlorate a complex of stoichiometry cis-{(NH3)2Pt(1-MeU)2}2· 3AgClO4·6H2O. Comparisons are made with previously reported heteronuclear species derived from cis-(NH3)2PtL2 and factors influencing the type of heteronuclear complex formed are discussed, particularly the versatility of binding patterns with Ag(I). A tetranuclear structure is suggested for the compound of stoichiometry cis-(NH3)2Pt(1-MeU)2·FeSO4·3H2O involving iron(II) ions linked by sulphate bridges. The electronic spectra of the trinuclear complexes cis-[(NH3)2Pt(1-MeU)2M(1-MeU)2Pt(NH3)2] (NO3)2·mH2O (M = Fe, Co or Ni) are reported. They show that the trans-MO4Pt2 geometry results in a very severely trans-elongated ligand field about the central metal ion, M. This conclusion is supported by the Mössbauer spectrum in the case of the iron(II) complex. The X- and Q-band EPR spectra of the Fe(III) analogue are also reported.  相似文献   

20.
The novel binuclear hydroxo-bridged complexes trans-[R(PPh3)Pd(μ-OH)2Pd(PPh3)R] and cis-[R(PPh3)Pd(μ-OH)(μ-pz)Pd(PPh3)R] (R = C6F5 or C6Cl5; pz = pyrazolate) have been prepared, and their structures assigned on the basis of NMR data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号