首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yuliang Jin 《Physica A》2010,389(23):5362-5379
Randomly packing spheres of equal size into a container consistently results in a static configuration with a density of ∼64%. The ubiquity of random close packing (RCP) rather than the optimal crystalline array at 74% begs the question of the physical law behind this empirically deduced state. Indeed, there is no signature of any macroscopic quantity with a discontinuity associated with the observed packing limit. Here we show that RCP can be interpreted as a manifestation of a thermodynamic singularity, which defines it as the “freezing point” in a first-order phase transition between ordered and disordered packing phases. Despite the athermal nature of granular matter, we show the thermodynamic character of the transition in that it is accompanied by sharp discontinuities in volume and entropy. This occurs at a critical compactivity, which is the intensive variable that plays the role of temperature in granular matter. Our results predict the experimental conditions necessary for the formation of a jammed crystal by calculating an analogue of the “entropy of fusion”. This approach is useful since it maps out-of-equilibrium problems in complex systems onto simpler established frameworks in statistical mechanics.  相似文献   

2.
The packing of binary and polydisperse unimodal and bimodal ensembles of hard spheres in the limit of high pressure is studied using a sequential addition algorithm. Upon fixing the number of particles, and their size distribution, the average (maximum) packing fraction is determined for systems of up to 20 000 particles. The structures obtained correspond to amorphous states close to the dense random close packing density. Binary distributions obtained are denser than the equivalent monodisperse distribution and agree with the theoretical prediction for an infinite size ratio limit. Unimodal normal and lognormal polydisperse distributions obtained compare favourably with available simulation and experimental data. Results for bimodal lognormal distributions are presented. In all cases it is seen how an increase in polydispersity increases the packing fraction of the system. The results can be employed to gain insight into optimal formulations for dense emulsions.  相似文献   

3.
We are interested in the propagation of light in a random packing of dielectric spheres within the geometrical optics approximation. Numerical simulations are performed using a ray tracing algorithm. The effective refractive indexes and the transport mean free path are computed for different refractive indexes of spheres and intersticial media. The variations of the optical path length under small deformations of the spheres assembly are also computed and compared to the results of Diffusive Wave Spectroscopy experiments. Finally, we propose a measure of the transport mean free path and a Diffusive Wave Spectroscopy experiment on a packing of glass spheres. The results of those experiments agree with the predictions of this ray tracing approach.  相似文献   

4.
The optical properties of suspensions are studied in a wide range of concentrations. An expression for the polarization operator is obtained taking into account the contributions of two-and three-particle correlations. The extinction length l and the transport length l* are calculated in terms of a model of hard spheres. A detailed comparison of the results of calculations with experimental data is performed. In calculations, the structure factor is determined in the Percus-Yevick approximation, while the form factor is taken into account in the Rayleigh-Gans approximation and in terms of the Mie theory. It is shown that taking into account the contribution of three-particle correlations improves the agreement of the theory with experiment. It is found that, in the range of high suspension concentrations, the optical parameters are more sensitive to the choice of the model for the structure factor than for the form factor.  相似文献   

5.
The sublattices of the tetrahedrally co-ordinated random network of Connell and Temkin are related to the dense random packing of equal spheres. Thus, by relaxation of the atomic co-ordinates of the former, the dependence of the pair distribution function and packing fraction of the latter on sphere compressibility can be investigated. The results are compared with experimental data on NiP alloys.  相似文献   

6.
We report an experimental study of the dispersion properties of individual spherical particles of size d, moving under gravity in a dry random packing of large spheres of size D. The diameter ratio d/D is below the critical value 0.1547 above which beads get pinned inside the packing . They move in this regime at a constant mean velocity decreasing with the ratio d/D. We analyse dispersion parallel and transverse to the mean velocity by studying the bead distribution in the x-y plane at the exit of the packing (radial dispersion) and the transit time distribution (longitudinal dispersion) while varying the height H of the bed. Diffusion in both directions is found to be governed essentially by the diameter D of packed spheres and not by the size d of the small beads. A dispersivity length characterising the spreading amplitude is determined. Comparisons between transverse and longitudinal dispersion demonstrate that both processes have similar properties. A key parameter is the diameter D which controls the path length of the particles. Received 5 November 1999 and Received in final form 30 March 2000  相似文献   

7.
A theory for the dielectric constant, ε, of a fluid mixture of dipolar hard spheres is formulated by generalizing the methods developed by Ramshaw and Wertheim for the pure fluid case. The resulting expression for ε depends on the pair distribution functions, g αβ(r 1, θ1, r 2, θ2) for a dipolar mixture. Due to the unavailability of exact representations for these dipolar pair distribution functions, the results of the mean spherical approximation are employed in the formalism developed. Numerical results are given for ε as calculated from the pair distribution functions for a spherical volume of macroscopic dimensions. The compositional dependence of the ε obtained in this way for a specific mixture is compared with the corresponding properties of the well established theories of Clausius-Mossotti-Debye and Onsager. In addition, the relative importance of the dipole moment and size of the hard sphere parameters in determining ε for a dipolar mixture (the correlative behaviour of which is described by the mean spherical approximation) is evaluated. It is found that the differences in hard core diameters can be largely ignored, in that ε for an ‘effective’ single component fluid can be given to within 2–5 per cent relative error (at worst) of the mean spherical approximation's result. Such an ‘effective pure fluid’ is described as having the same polarization content as the actual mixture being considered. Thereby, the properties of the effective fluid are determined by the quantity y = 4πβ(m 1 2 ρ1 + m 2 2 ρ2)/9 where mi and ρ i are the dipole moment and number density of component i in the binary mixture, with β = (kT)-1.  相似文献   

8.
For an amorphous model system consisting of a random set of 100 identical hard sphere densely packed in a cube with periodical boundary conditions the energies of spiral magnetic structures are investigated. It is shown for a simple model with exponentially decaying antiferromagnetic interaction that a spiral structure may exist displaying a minimum energy. The wavevector of the spiral minimizing the interaction energy depends on the range of interaction: for the short range one the pitch of the spiral is twice as high as that for the longer range of interactions The calculated energies are compared with the interaction energies in s.c., f.c.c., and b.c.c. lattices. It is found that the energy gain in the topologically random system with respect to the magnetically disordered state may be higher than that corresponding to the antiferromagnetic arrangement in a crystal.One of the authors (S. K.) thanks Dr. J. L. Finney for a valuable discussion concerning the computer generation of the random set of hard spheres.  相似文献   

9.
10.
We use a multispeckle diffusing wave spectroscopy (MSDWS) method to study the ensemble-averaged dynamics of the fluctuating speckle pattern when illuminating colloidal particles suspended in a static and opaque porous medium with a coherent light source. Experiments were performed with Brownian latex particles in a random packing of glass spheres. The mixing of the light scattered by the moving colloidal particles and the porous matrix gives rise to a plateau value of the intensity autocorrelation function in the long-waiting-time limit. From the plateau in the correlation function, we can determine the fraction of light scattered from moving particles and estimate the photon mean free path in the colloidal solution. The method opens up promising possibilities to probe the static fraction in semisolid materials.  相似文献   

11.
The conductivity of random close packed mixtures of conducting and insulating spheres has been measured. The composition dependence and the critical percolation density are similar to what has been observed in crystalline systems.  相似文献   

12.
The problem of finding the most efficient way to pack spheres has an illustrious history, dating back to the crystalline arrays conjectured by Kepler and the random geometries explored by Bernal in the 1960s. This problem finds applications spanning from the mathematician’s pencil, the processing of granular materials, the jamming and glass transitions, all the way to fruit packing in every grocery. There are presently numerous experiments showing that the loosest way to pack spheres gives a density of ∼55% (named random loose packing, RLP) while filling all the loose voids results in a maximum density of ∼63%-64% (named random close packing, RCP). While those values seem robustly true, to this date there is no well-accepted physical explanation or theoretical prediction for them. Here we develop a common framework for understanding the random packings of monodisperse hard spheres whose limits can be interpreted as the experimentally observed RLP and RCP. The reason for these limits arises from a statistical picture of jammed states in which the RCP can be interpreted as the ground state of the ensemble of jammed matter with zero compactivity, while the RLP arises in the infinite compactivity limit. We combine an extended statistical mechanics approach ‘a la Edwards’ (where the role traditionally played by the energy and temperature in thermal systems is substituted by the volume and compactivity) with a constraint on mechanical stability imposed by the isostatic condition. We show how such approaches can bring results that can be compared to experiments and allow for an exploitation of the statistical mechanics framework. The key result is the use of a relation between the local Voronoi volumes of the constituent grains (denoted the volume function) and the number of neighbors in contact that permits us to simply combine the two approaches to develop a theory of volume fluctuations in jammed matter. Ultimately, our results lead to a phase diagram that provides a unifying view of the disordered hard sphere packing problem and further sheds light on a diverse spectrum of data, including the RLP state. Theoretical results are well reproduced by numerical simulations that confirm the essential role played by friction in determining both the RLP and RCP limits. The RLP values depend on friction, explaining why varied experimental results can be obtained.  相似文献   

13.
With the energy-density coherent potential approximation method, a series of calculations concerning the contribution from the morphology and dispersion of random media composed of core-shell spheres on the transport properties of random media are conducted in terms of the scattering-cross-section efficiency factor, mean free path, velocity of electromagnetic energy, and diffusion coefficient. It is found that the core layer introduces more complicated resonant modes which lead to diverse possibilities to sharply decrease the transport of light within random media.  相似文献   

14.
15.
Monte Carlo simulations have been performed for equimolar mixtures of hard prolate spherocylinders of length: breadth ratio 2:1 and hard spheres, in the fluid region. Two systems have been studied. In the first the breadth of the spherocylinder was equal to the hard sphere diameter, and in the second system both components were of equal molecular volume.

The compressibility factor, PV/NkT, has been obtained for both mixtures at four reduced densities (packing fractions) from 0·20 to 0·45. The results have been compared with the predictions of several analytical equations appropriate to mixtures of hard convex molecules, and an equation due to Pavlicek et al. was found to be very accurate. The results have been used to calculate the excess volumes of mixing at constant pressure, in an attempt to establish the relative importance of the effects of differences in molecular volume and shape on the thermodynamic properties.

The structural properties of the mixtures have also been investigated by calculating pair distribution functions for the three types of pair interactions present in these mixtures.  相似文献   

16.
Spherical boundaries are used in a Monte Carlo simulation to calculate the angular structure of dipolar hard spheres near a neutral hard wall.  相似文献   

17.
Dense packings of freely jointed chains of tangent hard spheres are produced by a novel Monte Carlo method. Within statistical uncertainty, chains reach a maximally random jammed (MRJ) state at the same volume fraction as packings of single hard spheres. A structural analysis shows that as the MRJ state is approached (i) the radial distribution function for chains remains distinct from but approaches that of single hard sphere packings quite closely, (ii) chains undergo progressive collapse, and (iii) a small but increasing fraction of sites possess highly ordered first coordination shells.  相似文献   

18.
Recently we presented a new technique for numerical simulations of colloidal hard-sphere systems and showed its high efficiency. Here, we extend our calculations to the treatment of both 2- and 3-dimensional monodisperse and 3-dimensional polydisperse systems (with sampled finite Gaussian size distribution of particle radii), focusing on equilibrium pair distribution functions and structure factors as well as volume fractions of random close packing (RCP). The latter were determined using in principle the same technique as Woodcock or Stillinger had used. Results for the monodisperse 3-dimensional system show very good agreement compared to both pair distribution and structure factor predicted by the Percus-Yevick approximation for the fluid state (volume fractions up to 0.50). We were not able to find crystalline 3d systems at volume fractions 0.50–0.58 as shown by former simulations of Reeet al. or experiments of Pusey and van Megen, due to the fact that we used random start configurations and no constraints of particle positions as in the cell model of Hoover and Ree, and effects of the overall entropy of the system, responsible for the melting and freezing phase transitions, are neglected in our calculations. Nevertheless, we obtained reasonable results concerning concentration-dependent long-time selfdiffusion coefficients (as shown before) and equilibrium structure of samples in the fluid state, and the determination of the volume fraction of random close packing (RCP, glassy state). As expected, polydispersity increases the respective volume fraction of RCP due to the decrease in free volume by the fraction of the smaller spheres which fill gaps between the larger particles.  相似文献   

19.
Collections of random packings of rigid disks and spheres have been generated by computer using a previously described concurrent algorithm. Particles begin as infinitesimal moving points, grow in size at a uniform rate, undergo energy-onconserving collisions, and eventually jam up. Periodic boundary conditions apply, and various numbers of particles have been considered (N2000 for disks,N8000 for spheres). The irregular disk packings thus formed are clearly polycrystalline with mean grain size dependent upon particle growth rate. By contrast, the sphere packings show a homogeneously amorphous texture substantially devoid of crystalline grains. This distinction strongly influences the respective results for packing pair correlation functions and for the distributions of particles by contact number. Rapidly grown disk packings display occasional vacancies within the crystalline grains; no comparable voids of such distinctive size have been found in the random sphere packings. Rattler particles free to move locally but imprisoned by jammed neighbors occur in both the disk and sphere packings.This paper is dedicated to Jerry Percus on the occasion of his 65th birthday.  相似文献   

20.
Kinetic equations for the hard-sphere system are derived by diagrammatic techniques. A linear equation is obtained for the one-particle-one particle equilibrium time correlation function and a nonlinear equation for the one-particle distribution function in nonequilibrium. Both equations are nonlocal, noninstantaneous, and extremely complicated. They are valid for general density, since statistical correlations are taken into account systematically. This method derives several known and new results from a unified point of view. Simple approximations lead to the Boltzmann equation for low densities and to a modified form of the Enskog equation for higher densities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号