首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The infrared absorption spectra of the series MF2·4H2O (M = Fe, Co, Ni or Zn) and of the respective deuterates were recorded at 296 and ∼ 100 K in the 1200-400 cm−1 wavenumber region. Using the known ZnF2·4H2O structure as a model, the number of i.r. active librations and MF2 vibrations was predicted with the aid of a group theoretical treatment. The librations were distinguished from the MF2 and MO vibrations and assigned, using isotopic ratios and correlations between the unit cell volumes, the uncoupled OH and OD stretch vibrations of HDO and the twisting libration. The six librations are assigned to two types of water molecules with low symmetry and with different hydrogen bond strengths, and are compatible with an orthorhombic Pca21 structure. The v1 and v3 intramolecular MF2 vibrations are assigned, using ZnF2·4H2O crystal data and matrix-isolated v1 and v3 (v1.3) values as guide. Shifts of v1.3 and v1/v3 relative to the matrix-isolated values suggest smaller MF bond lengths. The shifts in the values of v1.3 and v1/v3 upon deuteration and lowering of the temperature indicate smaller MF bond lengths and FMF angles.  相似文献   

2.
The IR spectra of ZnF2·4H2O and its deuterated analogues are reported at ambient and liquid-nitrogen temperatures. The OH and OD stretching and bending vibrations of the water molecules are analysed in detail. The two types of water molecules give rise to different absorption peaks in the OH and OD stretching regions in samples that contain isotopically dilute HDO groups. The strongly hydrogen-bonded water molecules H2O(1) and H2O(4) show four broad OH and OD stretching modes at lower frequencies, while the weaker hydrogen-bonded ones H2O(2) and H2O(3) give rise to four narrow bands at higher frequencies. The νOD frequencies of isotopically dilute HDO groups correlate very well with the known R(H---F) and R(H---O) distances in the crystals and the assignment of these modes was done on this basis. It was also found that the ratio νOHOD decreases with decreasing values of R(H---O) or R(H---F) in ZnF2·4H2O.  相似文献   

3.
A detailed study of the libratory modes of H2O molecules in the i.r. spectra of SrX2 · 6H2O (X = Cl, Br) is reported. The rocking, wagging and twisting libratory modes of (H2O)b (bridging type bonding) and (H2O)t (terminal type bonding) molecules are assigned at 705, 552, 658 and 460, 400, 438 cm−1 and at 687, 532, 625 and 448, 370, 405 cm−1 in the respective spectra. Using a semi-empirical relation reported by the authors in an earlier communication, the barrier height for (H2O)b is estimated to be 22.16 and 20.04 kcal/mole and that for (H2O)t to be 10.04 and 8.64 kcal/mole in the respective salts. The value of the force constants KH and KH′ for H2O molecules are also reported.  相似文献   

4.
Summary Single crystal X-ray structural data (atT=300 K) are reported for CoSnF6·6H2O (rhombohedral; R{ie61-1}-C 3i 2 ;a=9.735(7) Å,c=10.095(7) Å, =120°;Z=3;R=0.047) and for NiSnF6· 6H2O (rhombohedral; R{ie61-2}-C 3i 2 ;a=9.697(1)Å,c=10.021(1)Å, =120°;Z=3;R=0.038). The two compounds are isostructural to FeSnF6·6H2O. IR and Raman spectroscopic data (atT=300 and 75 K) are reported for hydrated and for partially deuterated samples ofMSnF6·6H2O (M=Fe, Co, Ni). Two rather similar (OD) stretching frequencies and one (HDO) bending frequency of isotopically dilute HDO molecules are observed for either of the three compounds, which is consistent with one crystallographically distinct water molecule forming two different, but rather similar O ... F hydrogen bonds.
Kristallstrukturen und Schwingungsspektren vonMSnF6·6H2O (M=Fe, Co, Ni)
Zusammenfassung Die Kristallstrukturen von CoSnF6·6H2O (rhomboedrisch; R{ie61-3}-C 3i 2 ;a=9.735(7) Å,c=10.095(7) Å, =120°;Z=3;R=0.047) und von NiSnF6·6H2O (rhomboedrisch; R{ie61-4}-C 3i 2 ;a=9.697(1)Å,c=10.021(1)Å, =120°;Z=3;R=0.038) wurden mittels Röntgen-Einkristalldaten (beiT=300 K) bestimmt. Die beiden Verbindungen sind isostrukturell zu FeSnF6·6H2O. IR- und Raman-Spektren vonMSnF6·6H2O (M=Fe, Co, Ni) wurden von Proben mit unterschiedlichem Deuterierungsgrad gemessen (beiT=300 und 75 K). Bei allen drei Verbindungen findet man für isotopenverdünnte HDO Moleküle zwei nur geringfügig unterschiedliche (OD)-Valenzfrequenzen und eine (HDO)-Deformationsfrequenz, was mit der Existenz von nur einer Art von Wassermolekülen mit zwei verschiedenen, aber doch sehr ähnlichen O ... F Wasserstoffbrückenbindungen übereinstimmt.
  相似文献   

5.
Second derivative analysis of Raman spectra of H2O, D2O and HOD in liquid phase at room temperature for parallel and perpendicular polarized modes in the OH and OD stretching regions is reported. Five components obtained at approximately 3215, 3375, 3455, 3535 and 3640 cm−1 for the second derivative plots of Raman spectra of liquid water are explained as due to the presence of three types of associated water species with (i) both OH bonds involved in moderately strong hydrogen bonds (SS), (ii) both OH bonds involved in weak hydrogen bonds (WW), and (iii) one OH bond involved in strong and one in weak hydrogen bonds (SW) respectively. The derivative plots obtained for Raman spectra of D2O and HOD also contain features expected to be present on the basis of this model.  相似文献   

6.
The i.r. and Raman spectra of CuCl2·2H2O and K2CuCl4·2H2O and of deuterated samples of these compounds are presented in the range 50–1700 cm−1 at liquid helium, liquid nitrogen, and ambient temperatures. The spectra obtained are discussed and compared with the literature data in terms of both bonding structure of the water molecules and vibrational modes, assignment, intermolecular coupling, and combination bands of the H2O, HDO, and D2O librations. The i.r. and Raman bands of the librational modes of CuCl2·2H2O are very broad even at liquid helium temperature indicating orientational disorder of the water molecules.  相似文献   

7.
Fourteen bis(citrato)germanates(IV) and bis(citrato)stannates(IV) were prepared, in particular, [M(H2O)6][Ge(HCit)2] · 4H2O (M = Mg (I), Mn (II), Fe (III), Co (IV), Ni (V), Cu (VI), Zn (VII)) and [M(H2O)6][Sn(HCit)2] · nH2O (M = Mg, n = 4 (VIII); Mn, n = 2 (IX); Fe, n = 4 (X); Co, n = 4 (XI); Ni, n = 4 (XII); Cu, n = 4 (XIII); Zn, n = 3 (XIV)) (H4Cit is citric acid). The purity and the composition of the products were determined by a set of physicochemical methods including elemental analysis, thermogravimetry, and IR spectroscopy. The structures of I, II, IV, VI, VII, VIII, XI, and XII were determined by X-ray diffractometry. All eight crystals composed of centrosymmetrical octahederal [M(H2O)6]2+ cations, [Ge(HCit)2]2? (or [Sn(HCit)2]2?) anions, and crystal water molecules are isostructural. The structural units in I, II, IV, VI, VII, VIII, XI, and XII are connected by systems of hydrogen bonds to form a three-dimensional framework.  相似文献   

8.
The new borates Fe(II)(6)B(22)O(39)·H(2)O (colourless) and Co(II)(6)B(22)O(39)·H(2)O (dichroic: red/bluish) were synthesised under the high-pressure/high-temperature conditions of 6 GPa and 880 °C (Fe)/950 °C (Co) in a Walker-type multi-anvil apparatus. The compounds crystallise in the orthorhombic space group Pmn2(1) (Z=2) with the lattice parameters a=771.9(2), b=823.4(2), c=1768.0(4) pm, V=1.1237(4) nm(3), R(1)=0.0476, wR(2)=0.0902 (all data) for Fe(6)B(22)O(39)·H(2)O and a=770.1(2), b=817.6(2), c=1746.9(4) pm, V=1.0999(4) nm(3), R(1)=0.0513, wR(2)=0.0939 (all data) for Co(6)B(22)O(39)·H(2)O. The new structure type of M(6)B(22)O(39)·H(2)O (M=Fe, Co) is built up from corner-sharing BO(4) tetrahedra and BO(3) groups, the latter being distorted and close to BO(4) tetrahedra if additional oxygen atoms of the neighbouring BO(4) tetrahedra are considered in the coordination sphere. This situation can be regarded as an intermediate state in the formation of edge-sharing tetrahedra. The structure consists of corrugated multiple layers interconnected by BO(3)/BO(4) groups to form Z-shaped channels. Inside these channels, iron and cobalt show octahedral (M1, M3, M4, M5) and strongly distorted tetrahedral (M2, M6) coordination by oxygen atoms. Co(II)(6)B(22)O(39)·H(2)O is dichroic and the low symmetry of the chromophore [Co(II)O(4)] is reflected by the polarised absorption spectra (Δ(t)=4650 cm(-1), B=878 cm(-1)).  相似文献   

9.
The local structures and the g factors gi (i = x, y, z) for Ni3+ centers in Na2Zn(SO4)2·4H2O (DPPH) and K2Zn(SO4)2·6H2O (PHZS) crystals are theoretically studied by using the perturbation formulas of the g factors for a 3d7 ion with low spin (S = 1/2) in orthorhombically compressed octahedra. In these formulas, the contributions to g factors from both the spin-orbit coupling interactions of the central ion and ligands are taken into account, and the required crystal-field parameters are estimated from the superposition model and the local geometry of the systems. Based on the calculations, the Ni-O bonds are found to suffer the axial compression δz (or Δz) of about 0.111 Å (or 0.036 Å) along the z-axis for Ni3+ centers in DPPH (or PHZS) crystals. Meanwhile, the Ni-O bonds may experience additional planar bond length variation δx (≈0.015 Å) along x- and y-axes for the orthorhombic Ni3+ center in DPPH. The theoretical g factors agree well with the experimental data. The obtained local structural parameters for both Ni3+ centers are discussed.  相似文献   

10.
Heterometallic compounds of general formula [Fe 2 III MIIO(O2CR)6(H2O)3] · 3H2O (R = CH3, M = Co, Ni; R = CCl3, M = Co, Ni) have been studied by XPS. The compounds have been identified as high-spin complexes with metal atoms in oxidation states M(II) and M(III). Analysis of the XPS data revealed the tendency of the XPS pattern and magnetic parameters of molecules to change with a change in the electronic nature of metal atoms. The assignment is based on the degree of covalence of the M-O bond. In chloro-substituted heterocomplexes, electron density delocalization on the metal atoms with metal-to-ligand charge transfer through three bonds (M-O-C-C) is observed. The substitution in terminal groups leads to the change in the electron density distribution between the carboxylate and terminal groups.  相似文献   

11.
12.
The three-component systems RbClMnCl2H2O, 2RbCl · CoCl2 · 2H2O2RbCl · CuCl2 · 2H2OH2O, 2RbCl · CoCl2 · 2H2O2RbCl · MnCl2 · 2H2OH2O have been studied at 25°C. In the 2RbCl · CoCl2 · 2H2O2RbCl · CuCl2 · 2H2OH2O system, a discontinuous series of mixed crystals is formed and in the 2RbCl · CoCl2 · 2H2O2RbCl · MnCl2 · 2H2OH2O system, a continuous series is present.The unit cell parameters of the 2RbCl · CoCl2 · 2H2O double salt were determined: a = 5.586(2) Å, b = 6.469(3) Å, c = 6.988(2) Å, α = 65.31(3)°, β = 87.69(3)°, γ = 84.65(4)°, volume 228.4 Å3, Z = 1.The results obtained and discussed in conjunction with the crystal structure data suggest that for 2MICl · MIICl2 · 2H2O type salts the triclinic structure is stable only when the large rubidium and cesium ions participate in combinations with non-Jahn-Teller metal(II) ions. In the cases of Jahn-Teller metal(II) ions or with potassium or ammonium ions a tetragonal structure is always stable.  相似文献   

13.
The state of d-elements uranogermanates MII(HGeUO6)2·6H2O in aqueous salt solutions in a wide range of ionic strength, ionic composition, and acidity has been investigated. The pH ranges of the uranogermanates stability have been determined, and products of their transformation have been identified. Solubility, solubility equilibrium constant, and Gibbs energy of formation have been determined for the studied uranogermanates. Diagrams of uranium(VI), germanium(IV), and M(II) state in aqueous solutions and in equilibrium solid phases have been plotted.  相似文献   

14.
The structure, energies, and magnetic properties of electromeric forms of binuclear Fe–M complexes (M = Co, Ni, Cu, Zn) with a 1,10-phenanthroline-based linker have been studied by the DFT UB3LYP*/6-311++G(d,p) method. Studying the spin-state switching mechanisms has demonstrated that all the compounds under consideration are capable of undergoing spin crossover at the iron ion. In solutions of complexes with cobalt and nickel bis-chelates, a competing process accompanied by the change in magnetic characteristics—configurational isomerism—is possible.  相似文献   

15.
A series of isomorphous M(H(2)O)(4)[Au(CN)(4)](2)·4H(2)O (M = Mn, Co, Ni, Zn; Cu is similar) coordination polymers was synthesized from the reaction of M(II) with KAu(CN)(4); they consist of octahedrally coordinated metal centres with four equatorial water molecules and trans-axial N-cyano ligands from [Au(CN)(4)](-) moieties, generating a linear 1-D chain of M(H(2)O)(4)[Au(CN)(4)]-units. An additional interstitial [Au(CN)(4)](-) unit forms AuN and hydrogen bonds with adjacent chains. The Cu(II) system readily loses water to yield Cu[Au(CN)(4)](2)(H(2)O)(4), which was not structurally characterized. The magnetic properties of these polymers were investigated by a combination of SQUID magnetometry and zero-field muon spin relaxation (ZF-μSR). Only weak antiferromagnetic interactions along the chains are mediated by the [Au(CN)(4)]-units, but the ZF-μSR data indicates that interchain interactions yield a phase transition to a magnetically ordered state for Cu[Au(CN)(4)](2)(H(2)O)(4) below 0.6 K, while for M(H(2)O)(4)[Au(CN)(4)](2)·4H(2)O (M = Co), depopulation of zero-field split Kramer's doublets to an effective "S = 1/2" ground state yields a transition to a spin-frozen magnetic state below 0.26 K. On the other hand, only a simple slowing-down of spins above 0.02 K is observed for the more weakly zero-field split M(H(2)O)(4)[Au(CN)(4)](2)·4H(2)O (M = Mn, Ni) complexes.  相似文献   

16.
17.
Summary Crystals of Co2(X 2O7)·2H2O,X=P/As were synthesized under hydrothermal conditions. Their crystal structures were determined by single crystal X-ray diffraction:a=6.334(1)/6.531(2),b=13.997(2)/14.206(4),c=7.637(1)/7.615(2)Å, =94.77(2)/94.74(2)°, space group P21/n,R=0.032/0.046,R w=0.028/0.034 for 2423/2042 reflections and 131/119 variables. Within the twoXO4 tetrahedra connected via a common corner to anX 2O7 group the average P-O bond lengths are approximately equal (1.540 and 1.543 Å), but As-O differs significantly (1.685 and 1.696 Å). A comparison with the isotypic Mn and Mg pyrophosphates shows a correlation between the ratio Me-O/X-O and the angle O-X-O.
Vergleich der Kristallstrukturen von Co2(X 2O7)·2H2O,X=P und As
Zusammenfassung Kristalle von Co2(X 2O7)·2H2O,X=P/As wurden unter Hydrothermalbedingungen synthetisiert. Ihre Kristallstrukturen wurden mittels Röntgenbeugung an Einkristallen bestimmt:a=6.334(1)/6.531(2),b=13.997(2)/14.206(4),c=7.637(1)/7.615(2) Å, =94.77(2)/97.74(2)°, Raumgruppe P21/n,R=0.032/0.046,R w=0.028/0.034 für 2423/2042 Reflexe und 131/119 Variable. In den beiden über eine gemeinsame Ecke zuX 2O7-Gruppen verknüpftenXO4-Tetraedern sind die mittleren P-O-Abstände ungefähr gleich (1.540 und 1.543 Å), hingegen differiert As-O signifikant (1.685 und 1.696 Å). Ein Vergleich mit den isotypen Mn- und Mg-Pyrophosphaten zeigt eine Korrelation zwischen dem Quotienten Me-O/X-O und dem WinkelX-O-X.
  相似文献   

18.

Reaction of a freshly prepared Ni(OH)2?2 x (CO3) x ·yH2O with maleic acid in H2O at room temperature afforded [Ni(H2O)6][Ni(H2O)2(C4H2O4)]·4H2O, which consists of [Ni(H2O)6]2+ cations, [Ni(H2O)2(C4H2O4)]2? anions and lattice H2O molecules. Ni atoms in cations are octahedrally coordinated and Ni atoms in anions are each octahedrally coordinated by bidentate chelating maleato ligands and two water molecules at trans positions. Cations and anions are interlinked by hydrogen bonds to form 1D chains, which are hexagonally arranged and connected by the lattice water molecules. When heated in a flowing argon stream, the compound decomposes, with complete dehydration being followed by dissociation of nickel maleate into NiO and maleic anhydride.  相似文献   

19.
M k (VUO6) k · nH2O uranovanadates of alkali (Li, Na, K, Rb, Cs), alkaline-earth (Mg, Ca, Sr, Ba), 3d transition (Mn, Fe, Co, Ni, Cu, Zn), and rare-earth (Y, La, Ln) elements were prepared by precipitation from solutions under hydrothermal conditions and in solid-phase reactions. The composition and structure of these compounds and the role of M k atoms and H2O molecules in the formation of their structure were studied by X-ray diffraction, IR-spectroscopy, thermal analysis, and chemical analysis.  相似文献   

20.
Manganese zinc ferrous fumarato–hydrazinate precursor, Mn0.6Zn0.4Fe2(C4H2O4)3·6N2H4 was synthesized for the first time and characterized by chemical analysis, infrared spectral studies, and thermal analysis. Infrared studies show band at 977 cm?1 indicating bidentate bridging nature of the hydrazine in the complex. Thermogravimetric (TG) studies show two steps dehydrazination followed by two steps total decarboxylation. The precursor on touching with burning splinter undergoes self propagating autocatalytic decomposition yielding ultrafine Mn0.6Zn0.4Fe2O4. XRD studies confirms single phase formation as well as nanosize nature of “as prepared” Mn0.6Zn0.4Fe2O4. The saturation magnetization of the “as prepared” Mn0.6Zn0.4Fe2O4 was found to be 31.46 emu gm?1, which is lower than the reported, confirms the ultrafine nature of the oxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号