首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electronic absorption and fluorescence excitation and emission spectra of five phenothiazines (phenothiazine, promethazine, thionine, methylene blue and Azure A) were determined at room temperature (293 K) in several solvents of various polarities (cyclohexane, dioxane, ethyl ether, chloroform, ethyl acetate, 1-butanol, 2-propanol, ethanol, methanol, acetonitrile, dimethylformamide and dimethyl sulfoxide). The effect of the solvents upon the spectral characteristics was studied. In combination with the ground state dipole moments of these phenothiazines, the spectral data were used to evaluate their first excited singlet-state dipole moments by means of the solvatochromic shift method (Bakhshiev's and Kawski—Chamma—Viallet correlations). The theoretical ground and excited singlet-state dipole moments for phenothiazines were calculated as a vector sum of the π component (obtained by the Pariser—Parr—Pople method) and the σ component (obtained from σ-bond moments). A reasonable agreement was found with the experimental values. For most phenothiazines under study, excited singlet-state dipole moments were found to be significantly higher than their ground-state counterparts. The application of the Kamlet—Abboud—Taft solvatochromic parameters to the solvent effect on spectral properties of phenothiazines is discussed.  相似文献   

2.
The solvent effects on the electronic absorption and fluorescence emission spectra of several coumarins derivatives, containing amino, N,N-dimethyl-amino, N,N-diethyl-amino, hydroxyl, methyl, carboxyl, or halogen substituents at the positions 7, 4, or 3, were investigated in eight solvents with various polarities. The first excited singlet-state dipole moments of these coumarins were determined by various solvatochromic methods, using the theoretical ground-state dipole moments which were calculated by the AM1 method. The first excited singlet-state dipole moment values were obtained by the Bakhshiev, Kawski-Chamma-Viallet, Lippert-Mataga, and Reichardt-Dimroth equations, and were compared to the ground-state dipole moments. In all cases, the dipole moments were found to be higher in the excited singlet-state than in the ground state because of the different electron densities in both states. The red-shifts of the absorption and fluorescence emission bands, observed for most compounds upon increasing the solvent polarity, indicated that the electronic transitions were of π-π* nature.  相似文献   

3.
Electronic absorption and fluorescence emission spectra of several biologically important pyrimidines were measured at room temperature (298 K) in the following solvents: dioxane, ethyl ether, chloroform, ethyl acetate, 1-butanol, 2-propanol, methanol, dimethylformamide, acetonitrile, and dimethyl sulfoxide. The compounds studied were uracil, thymine, cytosine, 5-fluorouracil, 5-chlorouracil, 5-bromouracil, 5-iodouracil, 2-thiouracil, barbituric acid, and orotic acid. In combination with the ground-state dipole moments of the above compounds, these spectral data were used to determine their lowest excited singlet-state dipole moments using the soivatochromic method. The effects of the solvent upon the spectral properties and of the structure upon the ground and excited singlet-state dipole moments are discussed. For most of the compounds, the excited singlet-state dipole moments are higher than their ground-state counterparts.The theoretical dipole moments for all the pyrimidines listed above, as well as for pyrimidine, alloxan, and uracil-5-carboxylic acid, were calculated by two methods. One approach involved a combination of the PPP (-LCI-SCF-MO) method for the -contribution to the overall dipole moment and the -contribution obtained as a vector sum of the -bond moments and group moments. The second set of theoretical values was obtained by the CNDO/2 method. The results were compared with the experimental dipole moments.Presented, in part, at the XIth IUPAC Symposium on Photochemistry, Lisbon, Portugal, July 27–August 1, 1986, and at the 192nd National Meeting of the American Chemical Society, Anaheim, CA, September 7–12, 1986. Part of this work was carried out at the University of Texas at El Paso, El Paso, TX, during the tenure of one of the authors there (C. P.). This paper is dedicated to Dr. Rudolf Zahradník, the teacher of one of the authors (C. P.) and the authors' friend and colleague.  相似文献   

4.
The electronic absorption spectra of eight substituted acetic acids have been measured at room temperature in several solvents. The ground state dipole moments are evaluated experimentally for these molecules. These ground state values are used in conjunction with the spectral results to evaluate their first electronically excited state dipole moments. For all the molecules investigated here the dipole moments in the excited state are higher than their ground state values.  相似文献   

5.
The absorption and fluorescence spectra of three extensively used laser dyes namely 1,1,4,4-tetraphenyl-1,3-butadiene (TPB), 2-(4'-t-butylphenyl)-5-(4'-biphenylyl)-1-oxa-3,4-diazole (BPBD), 1,4-bis[2-(2-methylphenyl)ethenyl]-benzene (Bis-MSB) have been recorded at room temperature (300K) in solvents of different polarities. The effects of the solvents upon the spectral properties are discussed. The ground-state dipole moments (mu(g)) were determined experimentally by Guggenheim and Higasi method separately and were compared with theoretical values obtained using quantum chemical method. The ground-state dipole moments obtained by using Guggenheim method were then used in the estimation of excited-state dipole moments (mu(e)) by using Lippert's, Bakhshiev's and Kawski-Chamma-Viallet's equations. In all the above three equations the variation of the Stokes shift with the solvent dielectric constant and refractive index was made use of. It was observed that dipole moments of excited state were higher than those of the ground state for all the dyes.  相似文献   

6.
Absorption and fluorescence emission spectra of coumarins 6 and 7 were recorded in solvents with different solvent parameters, viz., dielectric constant epsilon and refractive index n. The fluorescence lifetime of these dyes were measured in butanol at higher values of viscosity over temperature. Experimental ground and excited state dipole moments are determined by means of solvatochromic shift method and also the excited state dipole moments are determined in combination with ground state dipole moments. It was determined that dipole moments of the excited state were higher than those of the ground state in both the molecules.  相似文献   

7.
The dipole moments of the ground and excited states of 4′-(hexyloxy)-4-biphenylcarbonitrile and 4-isothiocyanatophenyl 4-pentylbicyclo [2.2.2] octane-1-carboxylate nematic liquid crystals and their mixtures prepared in chloroform and dichloromethane were studied at room temperature. The dipole moments of the ground states of the all samples were calculated according to the Guggenheim–Smith method. The dipole moments of their excited states were determined with the help of the Lippert equation by measuring the absorption and fluorescence spectra, solvent polarity and refractive index values. It was determined that dipole moments of the excited states were higher than those of the ground states. Moreover, the dipole moments of the ground and excited states of two nematic liquid crystals were also estimated by using molecular mechanic method (Gaussian09 program (DFT/B3LYP 6-31G(dp)). The results obtained are interpreted in detail.  相似文献   

8.
Experimental dipole moments of curcumin (1) and of its parent compound dicinnamoylmethane (2) were determined in dioxane and benzene, respectively. Theoretical dipole moments were calculated using a combination of the PPP method (pi-moment) and a vector sum of the sigma-bond moments (sigma-moment) as well as by the ZINDO/1 method. Solvatochromic correlations were used to obtain the experimental first excited singlet-state dipole moments. The experimental electronic absorption spectra were compared with the calculated transitions.  相似文献   

9.
Electronic absorption, excitation and fluorescence spectra of fluorenone and 4-hydroxyfluorenone were recorded at room temperature in several aprotic solvent of varying polarities. The ground (mu(g)) and excited (mu(e)) state dipole moments of both molecules were estimated from solvatochromic shifts of absorption and fluorescence spectra as a function of the dielectric constant (epsilon) and refractive index (n). These experimental results were completed with theoretical results of quantum chemical calculations (AM1). The experimental and theoretical dipole moments in the ground state were compared. It was determined that dipole moments of excited state were higher than those of the ground state for both molecules.  相似文献   

10.
The absorption and fluorescence spectra of N-nonyl acridine orange are determined at room temperature (298 K) in cyclohexane, benzene, carbon tetrachloride, chloroform, chlorobenzene and dichloromethane. The ground state of dipole moment was obtained by impedance measurements using Guggenheim-Debeye's method. The experimental excited state dipole moment of N-nonyl acridine orange was determined using Bakhshiev's and Kawski-Chamma-Viallet's formulae and solvent polarity parameter proposed by Reichardt. These experimental results were completed with theoretical results using quantum chemical methods. The experimental (muexp=10.76 D) and theoretical (mucal=9.9 D) dipole moments in the ground and excited state (muexp*=14.56 D) were compared.  相似文献   

11.
The ground state (mu(g)) and excited state (mu(e)) dipole moments of 15 hemicyanine dyes were studied at room temperature. They were estimated from solvatochromic shifts of the absorption and the fluorescence spectra as function of the solvent dielectric constant (varepsilon) and refractive index (n). In this paper we applied the Stokes shift phenomena not only for the determination of the difference in the dipole moment of excited state and ground state, but to determine the value of polarizability alpha as well. The obtained results show that excited state dipole moments of hemicyanine dyes are in the range from 5 to 15 Debye, and the difference between the excited and ground state dipole moments vary from 1 to 7 Debye. The excited and ground state dipole moments difference (mu(e)-mu(g)) obtained for selected dyes are positive. It means that the excited states of the dyes under the study are more polar than the ground state ones. Additionally, the value of both polarizability (alpha) and the Onsager radius (a) of each investigated hemicyanine dye molecule are determined, and the ratio of alpha/a(3) for each dye were calculated, which oscillate from 0.29 to 5.21. The increase in dipole moment has been explained in terms of the nature of excited state and its resonance structure.  相似文献   

12.
The ground state (μ(g)) and the excited state (μ(e)) dipole moments of two coumarin laser dyes, coumarin 440 and 460, were studied at room temperature in various solvents, viz., general solvents, alcohols and liquid crystals at 298 K. In this work, we report dipole moment of laser dyes in different anisotropic (liquid crystal) and isotropic environments for understanding the effects of environments on the molecular dipole moment and comparing them. Ground and excited state dipole moments of coumarin dyes were evaluated by means of solvatochromic shift method. It was observed that dipole moment values of excited states (μ(e)) were higher than the corresponding ground state values (μ(g)) in all media.  相似文献   

13.
CNDO/s-CI and VE-PPP methods have been employed to calculate the dipole moments of the bases of nucleic acids in the ground and excited states. A component analysis in terms of μhyb(σ), μch and μπ has been done using the CNDO/s-CI method and these results have been compared with those obtained by the CNDO/2 and IEHT methods. It is observed that while the CNDO/2 and CNDO/s-CI methods give almost the same total dipole moments, component-wise their predictions are very different.Dipole moments of the molecules have also been studied for the lowest excited singlet and triplet π* ← π states. It is observed that the conventional method of calculating dipole moments using changes of only the net charges in the excited state does not give correct results for uracil and thymine, for which experimental results are available. Considering deformed non-planar excited state geometries for these molecules, the observed excited state dipole moments have been explained. A method has been suggested to include the effects of non-planarity while calculating the properties of a complex molecule in a π* ← π excited state. For adenine, guanine and cytosine, the excited state dipole moments are found to be smaller than the ground state values.  相似文献   

14.
Absorption and fluorescence emission of 4 and 7 substituted coumarins viz. C 440, C 490, C 485 and C 311 have been studied in various polar and non-polar organic solvents. These coumarin dyes are substituted with alkyl, amine and fluorine groups at 4- and 7-positions. They give different absorption and emission spectra in different solvents. The study leads to a possible assignment of energy level scheme for such coumarins including the effect on ground state and excited state dipole moments due to substitutions. Excited state dipole moments of these dyes are calculated by solvetochromic data experimentally and theoretically these are calculated by PM 3 method. The dipole moments in excited state, for all molecules investigated here, are higher than the corresponding values in the ground state. The increase in dipole moment has been explained in terms of the nature of excited state and resonance structure.  相似文献   

15.
16.
The magnitude of the Stokes shift (frequency shifts in absorption and fluorescence spectra) is observed on changing the solvents and further has been used to calculate experimentally the dipole moments (ground state and excited state) of acriflavine and acridine orange dye molecules. Theoretically, dipole moments are calculated using PM 3 Model. The dipole moments of excited states, for both molecules investigated here, are higher than the corresponding values in the ground states. The increase in the dipole moment has been explained in terms of the nature of the excited state. Acriflavine dye overcomes the non-lasing behaviour of acridine orange due to quaternization of the central nitrogen atom.  相似文献   

17.
The excited state (S1) dipole moment of m-AMSA (1), an acridine derivative with antitumor activity, was determined from solvatochromic shifts of the lowest energy absorption band in several organic solvents. The effect of the solute shape and the values of polarizability on the determined change of dipole moment between ground and excited state was discussed. The dipole moments in S0 and S1 state were calculated in gas phase with semiempirical quantum-chemical and DFT and CIS methods and in solvents with SM5.4A solvation model and compared with values obtained experimentally. All the results show that the dipole moment of compound 1 in the excited state is higher than that in the ground state. These methods quite well predict the values of Deltamicro between two states of an investigated compound.  相似文献   

18.
《Chemical physics》1987,118(3):333-343
Relativistic configuration interaction calculations are performed for twelve electronic states of the HBr molecule. Ground-state spectroscopic properties and electronic dipole moment function are calculated and compared with theoretical and experimental data. Electric dipole moments for eleven excited states are presented and discussed. Electronic transition moments between the ground state and seven excited states are presented in the intermediate coupling scheme.  相似文献   

19.
Excited-state dipole moments of some hydroxycoumarins, extensively used as laser dyes, have been determined using the solvatochromic method based on the microscopic solvent polarity parameter EN(T). Agreement between experimental and Austin model 1 (AM 1) calculated dipole moment changes has been found to be close in most of the cases. Our results are expected to be quite reliable in view of the fact that the correlation of the solvatochromic Stokes shifts is superior to that obtained using bulk solvent polarity functions. The dipole moments in the excited state, for all the molecules investigated, are higher than the corresponding values in the ground state. The increase in dipole moment upon excitation has been explained in terms of the nature of emitting state and resonance structure.  相似文献   

20.
The results from electrooptical absorption measurements (EOAM) on the ground and excited Franck–Condon state dipole moments of Prodan and Laurdan in 1,4-dioxane and cyclohexane are presented. The ground and excited Franck–Condon state electric dipole moments as well as the respective transition moment of both probes are parallel. The electric dipole moments of Prodan and Laurdan in the ground state in cyclohexane and 1,4-dioxane have values within the range (15.7–16.5) × 10−30 C m. On optical excitation the dipole moments increase by (42.1–49.5) × 10−30 C m. The obtained results are compared with the values of the dipole moments of Prodan and Laurdan determined by other methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号