首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Transition and relaxation processes of polyethylene (PE), polypropylene (PP), and polystyrene (PS) were studied by the positron annihilation technique. From measurements of lifetime spectra of positrons as a function of temperature, the lifetime of ortho-positronium, τ3, and its intensity, I3, were found to increase above 260 K for PP. This fact was attributed to a cooperative motion of large segments of molecules above the glass transition temperature, Tg. For PE, above Tg (140 K), the value of τ3 increased, but the temperature coefficient of I3 was negative below 230 K. From this fact, for PE, the molecular motions that cause the glass transition were associated with a rearrangement of molecules by local motions such as kink motions. The discrepancy between the results for PE and PP was attributed to the presence of methyl groups in PP and the resultant suppression of the local motions. For PS (Tg = 340 K), the molecular motions were found to start above 260 K, but those were suppressed by an interphenyl correlation. Detailed annihilation characteristics of positrons in polymers were also discussed. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 1601–1609, 1997  相似文献   

2.
The ortho‐positronium (o‐Ps) annihilation parameters, i.e. the mean o‐Ps lifetime, τ3, and the o‐Ps relative intensity, I3, in cis‐1,4‐polybutadiene (cis‐1,4‐PBD) and polyisobutylene (PIB) over a wide temperature range including the glass‐liquid transition have been measured by means of positron annihilation lifetime Spectroscopy (PALS). From them the free volume microstructural characteristics, i.e. the mean free volume hole size, Vh, and the free volume hole fraction, fh, have been determined via a semiempirical quantum‐mechanical model of o‐Ps in a spherical hole or a phenomenological model of volumetric and free volume hole properties, respectively. Consequently, the literature rheological data for both the above‐mentioned polymers have been related to the free volume hole fractions via the WLF‐Doolittle type equation. It has been found that i) in the case of PIB this equation holds over 130K above the glass transition temperature Tg and ii) in the case of cis‐PBD the WLF‐Doolitle equation is valid in the temperature range over 60K above 1.3Tg, but below 1.3Tg down to Tg the modified WLF‐Doolittle‐Macedo‐Litovitz equation with the additional activation‐energy term describes the shift factor data better.  相似文献   

3.
Free volumes in thermotropic side-chain liquid-crystalline polymers were probed by positron annihilation technique. Lifetime spectra of positrons were measured in the temperature range between 130 and −60°C in cooling. For a nematic liquid-crystalline polymer (polyacrylate), the lifetime of ortho-positronium (τ3) was decreased with decreasing temperature above the glass transition temperature (Tg, 21°C) with larger temperature coefficient than that below Tg. The intensity of ortho-positronium (I3) was constant above Tg. These facts mean that the size of the free-volume holes decreased with the decreasing the temperature but the concentration was almost constant in nematic phase. For a smectic liquid-crystalline polymer (poly(p-methylstyrene) derivative), a discontinuous decrease in the value of τ3 and that of I3 were observed at 107°C, which was the transition temperature from smectic to crystalline phase. Such discontinuous changes were not observed for the polyacrylate specimen. This difference was considered to be attributed to the higher-ordered structure of the smectic phase. © 1996 John Wiley & Sons, Inc.  相似文献   

4.
The glass transition and relaxation processes in polystyrene resins with the number average molecular weight ranging from 7.0·102 to 9.8·104 were studied with the positron annihilation technique. The pick-off annihilation lifetime of ortho-positronium (3) and its intensity (I 3) were measured in the temperature range from 20 to 430 K. The glass transition temperature (T g) was determined as an onset temperature coefficient of 3.T g shows the molecular weight dependence in these samples. BelowT g, local motions were detected by measurements ofI 3. The local motions could be observed above 100 K in this experiment.I 3 show the minimum at around 250 K and it does not show molecular weight dependence.  相似文献   

5.
Novolac epoxy resins cured with novolac resin, novolac acetate resin, novolac butyrate resin, and novolac phenylacetate resin named as EP, EPA, EPB, and EPP, respectively, were prepared. Their physical aging behavior at a Tg‐30 °C (30 °C below glass‐transition temperature) was examined by positron annihilation lifetime spectroscopy and differential scanning calorimetry. The ortho‐positronium annihilation lifetime τ3 variation extent of EP is less apparent than that of the other three esterified samples during physical aging. The time dependence of ops intensity I3 agreed with the Kohlrausch‐Williams‐Watts (KWW) equation. The relaxation time (τ0) and nonexponential parameter were calculated. The free volume and enthalpy relaxation rate characterized by the reciprocal of τ0 and ?ΔH/?logt, respectively, exhibit the same order—EPP > EPB > EPA > EP. These results suggest that the extend and rate of relaxation are not only related to the frozen free volume produced by quenching but also significantly influenced by segmental mobility of the network that attributed to the side‐group flexibility and their interaction with networks. This work also supports the fact that side‐group flexibility and the free‐volume fraction and distribution act in concert to control the water‐diffusion behavior in epoxy networks. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1135–1142, 2003  相似文献   

6.
Positron annihilation spectroscopy has been used to study free volume in an arnine-cured epoxy as a function of external pressure at temperatures above and below the glass transition temperature. The observed ortho-positronium lifetime τ3 and formation probability I3 decreased with increasing pressure. The decrease in τ3 is interpreted in terms of a corresponding decrease in average free-volume hole size over the range from 0.135 to 0.045 nm3. The fractional free-volume and the free-volume compressibility in the epoxy are calculated as functions of pressure at 100°C.  相似文献   

7.
The temperature dependence of the mean size of nanoscale free‐volume holes, 〈Vh〉, in polymer blend system consisting of polar and nonpolar polymers has been investigated. The positron lifetime spectra were measured for a series of polymer blends between polyethylene (PE) and nitrile butadiene rubber (NBR) as a function of temperature from 100 to 300 K. The glass transition temperatures (Tg) for blends were determined from the ortho‐positronium (o‐Ps) lifetime τ3 and the mean size of free‐volume holes 〈Vh〉 versus temperature as a function of wt % of NBR. The Tgs estimated from the PALS data agree very well with those estimated from DSC in view of different time scales involved in the two measurements. Both DSC and PALS results for the blends showed two clear Tgs of a two‐phase system. Furthermore, from the variation of thermal expansivity of the nanoscale free‐volume holes, the thermal expansion coefficients of glass and amorphous phases were estimated. Variations of the o‐Ps formation probability I3 versus temperature for pure PE and blends with low wt % of NBR were interpreted on the basis of the spur reaction model of Ps formation with reference to the effects of localized electrons and trapping centers produced by positron irradiation. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 227–238, 2009  相似文献   

8.
Positron annihilation lifetime spectroscopy (PALS) was used to study the free volume behavior in the temperature range between 100 and 370 K in semicrystalline poly(ε‐caprolactone) (PCL). For the analysis of the spectra we used the well‐known routine MELT as well as the new program LT8.0, which allows both discrete and log‐normal distributed annihilation rates. From experiments, confirmed by the analysis of simulated spectra, we found that MELT returns too large values for the o‐Ps lifetime τ3 associated with too small intensities I3. This is due to the underestimation of the width of o‐Ps lifetime distribution in MELT (the spectra analyzed contained 3 million counts). The same effects were observed in the parameters obtained from the discrete term analysis. LT, however, returns, when allowing the o‐Ps lifetime to be distributed, rather accurate values for τ3, I3, and the width (standard deviation σ3) of the o‐Ps lifetime distribution. The effect of the glass transition, melting, and crystallization on the annihilation parameters was observed. These results were compared with differential scanning calorimetry (DSC) and pressure–volume–temperature (PVT) experiments. From this comparison, the number density of holes and the fractional free (hole) volume have been estimated. At a “knee” temperature Tk ≈ 1.5 Tg, a leveling off of the o‐Ps lifetime τ3 and a distinct decrease in the width, σ3, of its distribution was observed; the latter effect was detected for the first time. Fast motional processes and/or the disappearance of the dynamic heterogeneity of the glass and the transition to a homogeneous liquid are discussed as possible reasons for these effects. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 3077–3088, 2003  相似文献   

9.
Open spaces and relaxation processes in the subsurface region of isotactic polypropylene were investigated by monoenergetic positron beams. From measurements of the lifetime spectra of positrons, the size of the open spaces in the subsurface region (≤ 0.2 μm) was found to be larger than that in the bulk; their differences were estimated as 20% at 295 K and 10% at 395 K. From conventional positron annihilation experiments, the glass‐transition temperatures, Tg (upper)and Tg(lower) were determined as 306 K and 278 K, respectively. These transition temperatures were associated with the onset temperatures of the molecular motions under the constraint imposed by crystalline regions and those free from the constraint, respectively. In the subsurface region, although the onset temperatures of the molecular motions were close to those in the bulk, the molecular motions above Tg (lower) were found to be suppressed. The annihilation characteristics of positrons with different implantation energies were also discussed. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 101–107, 2000  相似文献   

10.
Consequences are explored of a hole size distribution in an amorphous polymer for the ortho-positronium (o-Ps) lifetime (τ3) and intensity (I3), determined by positron annihilation lifetime spectroscopy. The disordered lattice model, with a vacancy fraction h as a central quantity, is used to represent the equation-of-state behavior of the polymer. By means of Monte Carlo simulations, we obtain the cluster size distribution as a function of h and hence temperature. The predicted average cluster size and the cluster concentration are compared to τ3 and I3 data, respectively, for bisphenol-a polycarbonate. Furthermore, the influence of an o-Ps lifetime distribution on the experimental mean τ3 is investigated. By mimicking the computational methods used in experimental analysis, agreement between experiment and theory in respect to τ3 and to I3 in the melt ensues. In the glass, however, the experimental I3 becomes increasingly smaller with decreasing temperature than is computed. These deviations may result from a distortion of the equilibrium free volume. © 1992 John Wiley & Sons, Inc.  相似文献   

11.
Free volume characteristics in three samples of monodisperse polystyrene were investigated by positron annihilation technique over a temperature range from 300 to 380 K. The number-average molecular weight of the samples ranged from 5730 to 1,524,000. The observed lifetime spectra were resolved into three components, where the longest lifetime, τ3 was associated with the pick-off annihilation of ortho-positronium (o-Ps) trapped by free volumes. The change of the temperature coefficient of τ3 was observed at around 350 K, at which the value of τ3 was a constant value of 2,3 ns for all specimens with different molecular weights. There was no discrete change of τ3 in intensity, which is corresponding to the number of free volumes. The size of free volume at glass transition was evaluated to be 0.l nm3. © 1996 John Wiley & Sons, Inc.  相似文献   

12.
Positron lifetime measurements, performed in the temperature range 80–300 K, are reported for polyethylene (PE) and polytetrafluoroethylene (PTFE). The lifetime spectra have been analyzed using the data processing routines LIFSPECFIT and MELT. Two long-lived components appear, which are attributed to pick-off annihilation of ortho-positronium in crystalline regions and at holes in the amorphous phase. The ortho-positronium lifetimes, τ3 and τ4, are used to estimate the crystalline packing density and the size of local free volumes in the crystalline and amorphous phases. The interstitial free volume in the crystals exhibits a weak linear increase with the temperature which is attributed to thermal expansion of the crystal unit cell. In the amorphous phase, the hole volume varies between 0.053 and 0.188 nm3 (PE) and between 0.152 and 0.372 nm3 (PTFE). Its temperature variation may be fitted by two straight lines, the intersection of which is used to estimate a glass transition temperature of Tg = 195 K for both PE and PTFE. The slopes of the free volume in the glassy and crystalline phases with the temperature correlate well with each other. The coefficients of thermal expansion of the hole volume are compared with the macroscopic volume change below and above the glass transition. From this comparison a fractional hole volume at Tg of 4.5 (PE) and 5.7% (PTFE) and a number of 0.73 (PE) and 0.36 (PTFE) × 1027 holes/m3 is estimated. Finally, it is found that the intensity of o-Ps annihilation in crystals shows a different temperature dependence to that in the amorphous phase. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1513–1528, 1998  相似文献   

13.
Se96Sn4 chalcogenide glass was prepared by melt quenching technique and exposed, at room temperature, to different doses of 4, 8, 12, 24 and 33 kGy of high-energy 60Co gamma irradiation. Differential scanning calorimeter (DSC) was used under non-isothermal condition to determine the glass transition temperature Tg, onset Tc and peak Tp temperatures of crystallization, of un-irradiated and γ-irradiated samples, at four different heating rates. The variation of Tg with heating rates was utilized to calculate the glass transition activation energy Et for un-irradiated and γ-irradiated glass, using the methods suggested by Kissinger and Moynihan. Based on the obtained values of the characteristic temperatures Tg, Tc and Tp, thermal stability was monitored through the calculation of the S parameter and the crystallization rate factor 〈Kp〉 for irradiated and un-irradiated glass. Results reveal that, as γ-dose increases Tg increases up to 12 kGy then decreases at higher doses but remains more than that of un-irradiated glass. Meanwhile, both Et and 〈Kp〉 attain their minimum values at the same dose of 12 kGy and the glass is thermally stable at this particular dose.  相似文献   

14.
The pore structure of NiO/γ-Al2O3 catalysts is characterized by positron lifetime and Doppler broadening measurements. A very long lifetime τ4 of 92 ns is resolved from the positron lifetime spectrum measured for pure Al2O3, which could be attributed to the ortho-positronium (o-Ps) lifetime in large pores. It was also found that the fitted lifetime τ4 and its corresponding intensity I4 obtained from the lifetime spectra both decrease with narrowing energy window of the stop channel in the fast–fast coincidence lifetime measurement system. This suggests that the ultra long lifetime is primarily due to the self annihilation of o-Ps which emits three gamma-rays. Such 3γ annihilation is further evidenced by measuring the Doppler broadening of annihilation gamma rays in coincidence with the prompt gamma rays (1.28 MeV) emitted from the 22Na positron source. In NiO/γ-Al2O3 catalysts both the lifetime τ4 and its intensity I4 decreases with increasing NiO content (from 3 wt% to 40 wt%), which indicates decreasing of the number of 3γ events. The 3γ annihilation parameter analyzed from the coincidence Doppler broadening spectrum shows consistent decrease with increasing NiO content.  相似文献   

15.
In this paper, the size and numerical concentration of free volume of high density polyethylene/carbon black (HDPE/CB) composite were investigated by positron annihilation lifetime spectroscopy (PALS). The PALS were measured in two series of samples, one with various CB contents in the composites and the other with changing the temperature of HDPE/CB composite containing 25 phr CB. It was found that the important parameters of PALS show their fluctuation around the percolation threshold. The conductivity of HDPE/CB is controlled by CB contribution, and that can be reflected in o-Ps lifetime. The temperature dependence of positron lifetimes reveals that the existence of glass transition temperatures and the size of free volume holes increases when temperature increases above glass transition. The results observed from the second set of samples suggest that positive temperature coefficient is in some way related with free volume expansion. The experiment facts implied that the conductivity of HDPE/CB was related with not only the size of free volume holes but also the number of free volume holes. The Doppler-broadening of HDPE/CB was also investigated.  相似文献   

16.
A theoretical model of the positron annihilation lifetime spectrum including the mechanisms of slow positronium (Ps) localisation and delayed Ps formation from a positron and a trapped electron was developed. The model was applied to two series of spectra for low-density polyethylene and high-density polyethylene (HDPE) collected at constant temperature (much below the glass temperature) as a function of measurement time. The Ps internal relaxation time and time of localisation of Ps in a free volume centre were determined. The results show that after long irradiation of the polymer a dominant fraction of positrons (unbound in Ps) annihilate from the trapped states. On the basis of parameters determined from the HDPE lifetime spectra, two S(t) curves (for sample in darkness and in light) were calculated. The predicted shapes of S(t) well agree with literature data obtained with the age–momentum correlation (AMOC) experiment. According to the new model the shapes of the para-Ps and the ortho-Ps (p-Ps) components are non-exponential. In spite of this, the multi-exponential decomposition of a polymer spectrum enables to determine correctly the value of the o-Ps lifetime, however the other parameters determined from the spectrum have no simple physical meaning.  相似文献   

17.
The free volume hole and its distribution in polyoxymethylene have been studied over the temperature range (5–90 °C) by positron annihilation lifetime spectroscopy. At a certain temperature (20 °C) the variation of ortho-positronium lifetime shows a distinct increase in its slope. The hole volume shows a small linear increase with temperature below glass transition temperatue and a steeper increase above it. A linear relation between ln(σT0.5) and 1/Vh was observed and the critical hole volume was estimated.  相似文献   

18.
Positron annihilation measurements as a function of temperature and time have been carried out on a poly(butadiene). The measurements were performed at several temperature points from 14 to 225 K. The measurement time was several hours to four days. The analysis of data shows the following features:
(i) the value of τ3 does not depend on the rate of cooling or time,
(ii) the value of I3 depends on the rate of cooling and the history of thermal treatment,
(iii) the dependence of I3 on time can be described by Debye function. But the rise in I3 is observed at very low temperatures,
(iv) the I3 decays to value of I3 observed during very slow cooling.

Article Outline

1. Introduction
2. Experiments
3. Results
4. Discussion
5. Conclusions
6. Uncited Reference
Acknowledgements
References

1. Introduction

If a glass is formed by rapid cooling of a super-cooled liquid to a temperature below the glass–liquid transition temperature, Tg, its properties will not be static, but will relax toward values characteristic of the corresponding “equilibrium” supercooled liquid as extrapolated from above to below Tg. This process named as structural relaxation or “physical aging” is of great practical importance because of its relevance to the designing and engineering of amorphous materials with desired properties. The relaxation property and transport phenomena of disordered polymers can be explained within the free-volume concept (Ferry, 1980). However, an unsettled problem is a way of quantifying the free-volume properties, such as the free-volume fraction, the average and the distribution of the free-volume size. In the last decade, the positron annihilation lifetime spectroscopy (PALS) technique has been recognised as a useful method to detect atomic scale free-volume holes of polymers ( Schrader and Jean, 1988). This technique involves using a positron source, mostly 22Na, to emit positrons into the sample. But these positrons and the accompanying gamma–quanta have sufficient energy (average positron energy 200 keV, gamma 890 keV) to induce radiation effects, and the positron probe can thus affect the sample being investigated during PALS experiments.The basic assumption of positron annihilation lifetime spectroscopy (PALS) data interpretation in terms of the free-volume concept is the proportionality of the intensity of long-lived ortho-positronium (o-Ps) component, I3, to the concentration of free-volume holes (Kobayashi et al., 1989). However, there are different findings regarding the influence of external factors on the “true” intrinsic value of I3. Its variation with the measurement time is regarded as a manifestation of the relaxation of free-volume fraction. On the other hand, the decrease in I3 with PALS measurement time is related to the activity of the positron source and the chemical processes in the positron spur, e.g., formation of free radicals. There are PALS measurements on semi-crystalline samples (Suzuki et al., 1996), observing the I3 increase with elapsed time when the temperature of the sample is below Tg.All these reports indicate that the o-Ps formation in polymers is more complicated and the basic assumption of PALS interpretation may be questionable.In this work, PALS results will be presented on the amorphous cistrans-1,4-poly(butadiene), cistrans-1,4-PBD, in a wide temperature range from 14 to 350 K. The aim of this paper is the study of the influence of temperature, time and sample history on the intensity I3, life time of o-Ps, τ3, as well as the S-parameter from Doppler broadening measurements.

2. Experiments

The PALS experiments were conducted using a conventional fast–fast coincidence system having a time resolution of ca. 320 ps (FWHM). Cistrans-1,4-PBD has a molecular weight of Mw = 2 × 104, the glass transition temperature Tg = 178 K (Zorn et al., 1995). The isomer composition was 41% cis, 52% trans and 7% vinyl form. This isomer composition was chosen to avoid a crystallisation process on the PBD sample (Zorn et al., 1995).The positron source, consisting of 2 MBq 22N a sealed between two 3.5 μm Ni foils, was sandwiched between polymer discs, each of about 3 mm thick and with a diameter of 10 mm. At a chosen temperature, each spectrum was accumulated for 1 h, resulting in a total number of counts of about 1.14 mil. At least, two such spectra were recorded at each temperature point.The 22Na source–sample assembly was mounted on a closed cycle helium gas refrigerator. The assembly was kept in a rotary pump vacuum of about 4 Pa. Automatic temperature regulation was used during all the measurements and the temperature was controlled within ±1 K. Several different temperature scans on the specimens were performed. The first sequence (heating) was the following: I3, τ3 were first evaluated at room temperature of 300 K immediately after the source installation. Then, fast cooling to the temperature of 40 K at a rate 4 K/min was performed and the temperature increased in steps of 10 K. The second sequence (cooling) started at 300 K, then the temperature decreased to 14 K in steps of 10 K.For the PALS measurement as a function of time, the PBD was annealed in the chamber at 300 K for several hours, then cooled to the measurement temperature and the measurement began immediately.The positron life-time spectra were measured as a function of the elapsed time at 14 different temperature points below and above Tg.The PALS data were also accumulated during heating of the samples to 300 K and cooling of PBD to chosen temperature below 300 K. The total irradiation time of 1080 h was divided between PALS and calibration (Bi) measurements. To clearly describe the thermal history of the experiment, the time dependence of I3 and τ3 is shown in Fig. 1 and Fig. 2, respectively. The values of I3 and τ3 at room temperature were the same despite the long irradiation time and complicated thermal history. This indicates that a possible irradiation damage does not influence the annihilation observables.  相似文献   

19.
The ortho‐positronium (o‐Ps) lifetime τ3 and its intensity I3 in various fluorinated polyimides were determined by the positron annihilation technique and were studied with the spin–lattice relaxation time T1 and the propylene permeability, solubility, diffusivity, and permselectivity for propylene/propane in them. τ3, I3, and the distribution of τ3 changed when the bulky moieties in the polyimides were changed. The polyimides, having both large τ3 and I3 values, exhibited a short T1 and a high permeability with a low permselectivity. The propylene permeability and diffusivity were exponentially correlated with the product of I3 and the average free‐volume hole size estimated from τ3. In highly plasticized states induced by the sorption of propylene, the permeability increased with the propylene pressure in excellent agreement with the change in the free‐volume hole properties probed by o‐Ps. The large and broad distribution of the free‐volume holes and increased local chain mobility for the 2,2‐bis(3,4‐decarboxyphenyl) hexafluoropropane dianhydride‐based polyimides are thought to be important physical properties for promoting penetrant‐induced plasticization. These results suggest that o‐Ps is a powerful probe of not only the free‐volume holes but also the corresponding permeation mechanism and penetrant‐induced plasticization phenomenon. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 308–318, 2003  相似文献   

20.
The positron annihilation lifetime measurements have been performed on a number of amorphous styrene–methyl acrylate copolymers and styrene–butyl methacrylate copolymers. The densities of copolymers were obtained with immersion method by using a capillary pycnometer and the average molecular weights were determined by gel chromatography. The lifetime τ3 of ortho‐positronium (o‐Ps) pick‐off annihilation have been found to correlate with side group volume and polarity of macromolecular chains in the copolymers, and relative intensity I3 is attributed mainly to the electron‐attracting groups trapping the spur electrons and positrons. The experimental results have been discussed on the basis of the structural variation of macromolecular chains. In addition, the PALS measurement as a function of time for polystyrene and several styrene–methyl acrylate copolymers has also been performed. The result shows that an electric field is built in polymers during extended positron annihilation spectroscopy measurement, and the field effect is a main factor which causes the decrease in I3 with time. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2476–2485, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号