首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Chemical physics letters》1986,128(4):432-438
CH stretching overtone spectra of acetyl compounds are measured in the liquid phase. A doublet structure is commonly observed in the overtone spectra of acetyl CH stretching vibrations and is attributed to the sterically inequivalent orientations of methyl CH bonds. Substituent effects exerted by the carbonyl group are discussed.  相似文献   

2.
The vapor phase CH stretching vibrational overtone spectra of tert-butylbenzene and tert-butyl chloride are measured in the Delta upsilon(CH) = 2-7 region, while the spectrum of tert-butyl iodide is recorded in the Delta upsilon(CH) = 2-6 region. The overtone spectrum of tert-butylbenzene is too complex to make detailed spectral assignments. Local mode frequencies, omega, and anharmonicities, omegax, are obtained for tert-butyl chloride and tert-butyl iodide. The torsional dependencies of the local mode frequency, delta(omega), and anharmonicity, delta(omega)(x), are calculated for the tert-butyl halides. Nonbonded, through-space intramolecular interactions are observed in the blue-shifting of sterically hindered CH oscillators. Scaling factors are presented for relating ab initio calculated local mode parameters to experimental values for alkyl CH oscillators. Fermi resonances are observed between local mode states and local mode/normal mode combination states in tert-butyl chloride and tert-butyl iodide. Vibrational overtone transition intensities are calculated in the range Delta upsilon(CH) = 3-9 using the harmonically coupled anharmonic oscillator (HCAO) model and ab initio dipole moment functions. The resultant HCAO intensities are compared to experimental intensities at Delta upsilon(CH) = 3.  相似文献   

3.
Vapor phase OH-stretching overtone spectra of ethylene glycol were recorded to investigate weak intramolecular hydrogen bonding. The spectra were recorded with conventional absorption spectroscopy and laser photoacoustic spectroscopy in the first to fourth OH-stretching overtone regions. The room-temperature spectra are dominated by two conformers that show weak intramolecular hydrogen bonding. A less abundant third conformer, with no sign of hydrogen bonding, is also observed. Vapor phase spectra of the ethylene-d(4) glycol isotopomer were also recorded and used to identify an interfering resonance between CH-stretching and OH-stretching states in the fourth overtone. Anharmonic oscillator local mode calculations of the OH-stretching transitions have provided an accurate simulation of the observed spectra. The local mode parameters were calculated with coupled cluster ab initio methods. The calculations facilitate assignment of the different conformers in the spectra and illustrate the effect of the intramolecular hydrogen bonding.  相似文献   

4.
The vibrational overtone spectra of the acetylenic (Δυ = 4, 5) and methyl (Δυ = 5, 6) C-H stretch transitions of tert-butyl acetylene [(CH(3))(3)C-C≡C-H] were obtained using the phase shift cavity ring down (PS-CRD) technique at 295 K. The C-H stretch fundamental and overtone absorptions of the acetylenic (Δυ = 2 and 3) and methyl (Δυ = 2-4) C-H bonds have been obtained using a Fourier transform infrared and near-infrared spectrophotometer. Harmonic frequency ω(ν(1)) and anharmonicities x(ν(1)) and x(ν(1), ν(24)) are reported for the acetylenic C-H bond. Molecular orbital calculations of geometry and vibrational frequencies were performed. A harmonically coupled anharmonic oscillator (HCAO) model was used to determine the overtone energy levels and assign the absorption bands to vibrational transitions of methyl C-H bonds. Band strength values were obtained experimentally and compared with intensities calculated in terms of the HCAO model where only the C-H modes are considered. No adjustable parameters were used to get order of magnitude agreement with experimental intensities for all pure local mode C-H transitions.  相似文献   

5.
The OH-stretch overtone spectroscopy and dynamics of the hydroxymethyl radical, CH(2)OH, are reported in the region of the second and third overtones, which is above the thermochemical threshold to dissociation to H+CH(2)O (D(0)=9600 cm(-1)). The second overtone spectrum at 10 484 cm(-1) is obtained by double resonance IR-UV resonance enhanced multiphoton ionization (REMPI) spectroscopy via the 3p(z) electronic state. It is rotationally resolved with a linewidth of 0.4 cm(-1) and displays properties of local-mode vibration. No dissociation products are observed. The third overtone spectra of CH(2)OH and CD(2)OH are observed at approximately 13 600 cm(-1) by monitoring H-atom photofragments while scanning the excitation laser frequency. No double resonance REMPI spectrum is detected, and no D fragments are produced. The spectra of both isotope analogs can be simulated with a linewidth of 1.3 cm(-1), indicating dissociation via tunneling. By treating the tunneling as one dimensional and using the calculated imaginary frequency, the barrier to dissociation is estimated at about 15 200 cm(-1), in good agreement with theoretical estimations. The Birge-Sponer plot is linear for OH-stretch vibrations 1nu(1)-4nu(1), demonstrating behavior of a one-dimensional Morse oscillator. The anharmonicity parameter derived from the plot is similar to the values obtained for other small OH containing molecules. Isomerization to methoxy does not contribute to the predissociation signal and the mechanism appears to be direct O-H fission via tunneling. CH(2)OH presents a unique example in which the reaction coordinate is excited directly and leads to predissociation via tunneling while preserving the local-mode character of the stretch vibration.  相似文献   

6.
The 2-diazo-5,5-dimethyl-cyclohexane-1,3-dione (3) was synthesized and the FT-IR/Raman spectra were measured with the purpose of obtain a full assignment of the vibrational modes. Singular aspects concerning the -CNN oscillator are discussed in view of two strong bands observed in the region of 2300-2100 cm(-1) in both, Infrared and Raman spectra. The density functional theory (DFT) was used to obtain the geometrical structure and for assisting in the vibrational assignment joint to the traditional normal coordinate analysis (NCA). The observed wavenumbers at 2145 (IR), 2144(R) are assigned as the coupled nu(NN)+nu(CN) vibrational mode with higher participation of the NN stretching. A 2188 cm(-1) (IR) and at 2186 cm(-1) (R) can be assigned as a overtone of one of nu(CC) normal mode or to a combination band of the fundamentals delta(CCH) found at 1169 cm(-1) and the delta (CCN) found at 1017 cm(-1) enhanced by Fermi resonance.  相似文献   

7.
The room-temperature vibrational overtone spectra of the formic acid isotopomers HCOOH and DCOOH have been recorded in the third and fourth OH-stretching overtone regions with intracavity laser photoacoustic spectroscopy. Resonance coupling between the OH- and CH-stretching vibrations in HCOOH is clearly identified in the fourth overtone region. This is an example of strong coupling across bonds. In the third overtone region, no resonance is observed. Vibrational energies and intensities of the OH- and CH-stretching overtones and combination bands have been calculated with an anharmonic oscillator local mode model. The pure OH-stretching bright state carries almost all the intensity prior to resonance coupling.  相似文献   

8.
We have measured the OH-stretching fundamental and overtone spectra of resorcinol and hydroquinone in a supersonic jet using nonresonant ionization detected infrared/near-infrared spectroscopy. Anharmonic oscillator local mode calculations of the OH-stretching frequencies and intensities and Boltzmann populations of the stable rotamers have been calculated at the B3LYP/6-311++G(3df,2pd) level to help interpret the observed spectra. Resorcinol has three stable rotamers and in the recorded second and third OH-stretching overtone spectra there is evidence of two distinguishable rotamers. Hydroquinone has two stable rotamers; however, the OH-stretching oscillators of each rotamer are so similar in nature that even up to the fourth OH-stretching overtone the transitions coincide. These results place a limit on the ability of the jet-cooled overtone spectroscopy technique to distinguish between rotamers.  相似文献   

9.
The electronic and infrared spectra of 2-fluoropyridine-methanol clusters were observed in a supersonic free jet. The structure of hydrogen-bonded clusters of 2-fluoropyridine with methanol was studied on the basis of the molecular orbital calculations. The IR spectra of 2-fluoropyridine-(CH3OH)n(n = 1-3) clusters were observed with a fluorescence-detected infrared depletion (FDIR) technique in the OH and CH stretching vibrational regions. The structures of the clusters are similar to those observed for 2-fluoropyridine-(H2O)n (n = 1-3) clusters. The existence of weak hydrogen bond interaction through aromatic hydrogen was observed in the IR spectra. The theoretical calculation also supports the result. The vibrational frequencies of CH bonds in CH3 group are affected by hydrogen bond formation although these bonds do not directly relate to the hydrogen bond interaction. The B3LYP/6-311 ++G(d,p) calculations reproduce well the vibrational frequency of the hydrogen-bonded OH stretching vibrations. However, the calculated frequency of CH stretching vibration could not reproduce the IR spectra because of anharmonic interaction with closely lying overtone or combination bands for nu3 and nu9 vibrations. The vibrational shift of nu2 vibration is reproduced well with molecular orbital calculations. The calculation also shows that the frequency shift of nu2 vibration is closely related to the CH bond length at the trans position against the OH bond in hydrogen-bonded methanol.  相似文献   

10.
Vapor-phase OH-stretching overtone spectra of 1,3-propanediol and 1,4-butanediol were recorded and compared to the spectra of ethylene glycol to investigate the effect of increased intramolecular hydrogen bond strength on OH-stretching overtone transitions. The spectra were recorded with laser photoacoustic spectroscopy in the second and third OH-stretching overtone regions. The room-temperature spectra of each molecule are dominated by two conformers that show intramolecular hydrogen bonding. Anharmonic oscillator local-mode calculations of the OH-stretching transitions have been performed to aid assignment of the different conformers in the spectra and to illustrate the effect of the intramolecular hydrogen bonding. The hydrogen bond strength increases in the order ethylene glycol, 1,3-propanediol, and 1,4-butanediol. The overtone transitions of the hydrogen-bonded hydroxyl groups are more difficult to observe with increasing intramolecular hydrogen bond strength. We suggest that the bandwidth of these transitions increases with increasing hydrogen bond strength and with increasing overtone and furthermore that these changes are in part responsible for the lack of observed overtone spectra for complexes.  相似文献   

11.
Infrared spectra of mass-selected F- -(CH4)n (n = 1-8) clusters are recorded in the CH stretching region (2500-3100 cm-1). Spectra for the n = 1-3 clusters are interpreted with the aid of ab initio calculations at the MP2/6-311++G(2df 2p) level, which suggest that the CH4 ligands bind to F- by equivalent, linear hydrogen bonds. Anharmonic frequencies for CH4 and F--CH4 are determined using the vibrational self-consistent field method with second-order perturbation theory correction. The n = 1 complex is predicted to have a C3v structure with a single CH group hydrogen bonded to F-. Its spectrum exhibits a parallel band associated with a stretching vibration of the hydrogen-bonded CH group that is red-shifted by 380 cm-1 from the nu1 band of free CH4 and a perpendicular band associated with the asymmetric stretching motion of the nonbonded CH groups, slightly red-shifted from the nu3 band of free CH4. As n increases, additional vibrational bands appear as a result of Fermi resonances between the hydrogen-bonded CH stretching vibrational mode and the 2nu4 overtone and nu2+nu4 combination levels of the methane solvent molecules. For clusters with n < or = 8, it appears that the CH4 molecules are accommodated in the first solvation shell, each being attached to the F- anion by equivalent hydrogen bonds.  相似文献   

12.
Infrared multiple photon dissociation spectra for the chloride ion solvated by either water, methanol or ethanol have been recorded using an FTICR spectrometer coupled to a free-electron laser, and are presented here along with assignments to the observed bands. The assignments made to the Cl(-)/H(2)O, Cl(-)(CH(3)OH), and Cl(-)(CH(3)CH(2)OH) spectra are based on comparison with the neutral H(2)O, CH(3)OH, and CH(3)CH(2)OH spectra, respectively. This work confirms that a band observed around 1400 cm(-1) in the Cl(-)(H(2)O) spectrum is not due to the Ar tag in Ar predissociation spectra. The carrier of this band is, most likely, the first overtone of the OHCl bend. Based on the position of the overtone in the IRMPD spectrum, 1375 cm(-1), the fundamental must occur very close to 700 cm(-1) and observation of this band should aid theoretical treatments of the spectrum of this complex. B3LYP/6-311++G(2df,2pd) calculations are shown to reproduce the IRMPD spectra of all three solvated chloride species. They also predict that attaching one or two Ar atoms to the Cl(-)(H(2)O) complex results in a shift of no more than a few wavenumbers in the fundamental bands for the bare complex, in agreement with previous experiment. For both alcohol-Cl(-) complexes, the S(N)2 "backside attack" isomers are not observed and Cl(-) is predicted theoretically, and confirmed experimentally, to be bound to the hydroxyl hydrogen. For Cl(-)(CH(3)CH(2)OH), the trans and gauche conformers are similar in energy, with the gauche conformer predicted to be thermodynamically favoured. The experimental infrared spectrum agrees well with that predicted for the gauche conformer but a mixture of gauche and anti conformers cannot be ruled out based on the experimental spectra nor on the computed thermochemistry.  相似文献   

13.
The near infrared overtone absorption spectrum of liquid phase nitromethane in the spectral region deltaV = 2-5 is reported. The observed spectrum is analysed using local mode model. It is shown that the observed CH local mode overtones and local-local combinations are well predicted by a C(3V) coupled oscillator Hamiltonian.  相似文献   

14.
《Chemical physics》1986,108(3):349-356
The vibrational overtone spectra of the liquid phase 1,2-dichloroethane and 1,2-dibromoethane in the spectral regions of the CH stretching local mode overtones corresponding to ΔυCH = 2 to ΔυCH = 5 are reported. The observed spectral features are assigned using the local mode model. Local mode frequencies ωCH and diagonal local model anharmonicities XCH are obtained from an analysis of the spectra. The local-local combinations observed are interpreted on the basis of a coupled CH oscillator model hamiltonian. Local-normal combinations show complex structures and their possible assignments are given.  相似文献   

15.
The vibrational overtone spectrum of HOONO is examined in the region of the 2 nu(OH) and 3 nu(OH) bands using action spectroscopy in conjunction with ab initio intensity calculations. The present measurements indicate that the oscillator strength associated with the higher energy trans-perp conformer of HOONO is stronger relative to the lower energy cis-cis conformer for both these vibrational overtone levels. Ab initio intensity calculations carried out at the QCISD level of theory suggest that this disparity in oscillator strength apparently arises from differences in the second derivative of the transition dipole moment function of the two isomers. The calculations indicate that the oscillator strength for the trans-perp isomer is approximately 5.4 times larger than that of the cis-cis isomer for the 2 nu(OH) band and approximately 2 times larger for 3 nu(OH) band. The band positions and intensities predicted by the calculations are used to aid in the assignment of features in the experimental action spectra associated with the OH stretching overtones of HOONO. The observed relative intensities in the experimental action spectra when normalized to the calculated oscillator strengths appears to suggest that the concentration of the higher energy trans-perp isomer is comparable to the concentration of the cis-cis isomer in these room temperature experiments.  相似文献   

16.
Vapor phase absorption spectra and integrated band intensities of the OH stretching fundamental as well as first and second overtones (2ν(OH) and 3ν(OH)) in peroxyacetic acid (PAA) have been measured using a combination of FT-IR and photoacoustic spectroscopy. In addition, ab initio calculations have been carried out to examine the low energy stable conformers of the molecule. Spectral assignment of the primary features appearing in the region of the 2ν(OH) and 3ν(OH) overtone bands are made with the aid of isotopic substitution and anharmonic vibrational frequency calculations carried out at the MP2/aug-cc-pVDZ level. Apart from features associated with the zeroth-order OH stretch, the overtone spectra are dominated by features assigned to combination bands composed of the respective OH stretching overtone and vibrations involving the collective motion of several atoms in the molecule resulting from excitation of the internal hydrogen bonding coordinate. Integrated absorption cross section measurements reveal that internal hydrogen bonding, the strength of which is estimated to be ~20 kJ/mol in PAA, does not result in a enhanced oscillator strength for the OH stretching fundamental of the molecule, as is often expected for hydrogen bonded systems, but does cause a precipitous drop in the oscillator strength of its 2ν(OH) and 3ν(OH) overtone bands, reducing them, respectively, by a factor of 165 and 7020 relative to the OH stretching fundamental.  相似文献   

17.
The high resolution spectra of several CH overtone bands in diacetylene and diacetylene-d1 were measured using optothermally detected excitation of a collimated molecular beam. The first overtone of the acetylenic CH stretches in these two molecules were recorded in a single resonance scheme using a 1.5 μm color center laser. The second overtone spectra were taken using sequential infrared/infrared double resonance with a 3.0 and a 1.5 μm color center lasers. The perturbations in the spectra have been analyzed to obtain information about the nature and timescales of the underlying intramolecular vibrational redistribution processes. The uncovered dynamical features appear to be dominated by anharmonic couplings and exhibit regular, not chaotic, behavior. The first and second overtone spectra of diacetylene-d1 are consistent with a coupling model which involves coupling through a doorway state and then subsequent coupling to the bath. In diacetylene, a combination band was also recorded which, in the local mode picture, is equivalent to putting two quanta in one acetylenic CH stretch and one quanta at the other end of the molecule. Comparison of this spectrum with the spectrum obtained by putting three quanta in the same CH stretch, is consistent with earlier observations that delocalized combination bands are less perturbed than nearly isoenergetic pure overtone states.  相似文献   

18.
The title reaction is investigated by co-expanding a mixture of Cl2 and CH2D2 into a vacuum chamber and initiating the reaction by photolyzing Cl2 with linearly polarized 355 nm light. Excitation of the first C-H overtone of CH2D2 leads to a preference for hydrogen abstraction over deuterium abstraction by at least a factor of 20, whereas excitation of the first C-D overtone of CH2D2 reverses this preference by at least a factor of 10. Reactions with CH2D2 prepared in a local mode containing two quanta in one C-H oscillator /2000>- or in a local mode containing one quantum each in two C-H oscillators /1100> lead to products with significantly different rotational, vibrational, and angular distributions, although the vibrational energy for each mode is nearly identical. The Cl+CH2D2/2000>- reaction yields methyl radical products primarily in their ground state, whereas the Cl+CH2D2/1100> reaction yields methyl radical products that are C-H stretch excited. The HCl(v=1) rotational distribution from the Cl+CH2D2/2000>- reaction is significantly hotter than the HCl(v=1) rotational distribution from the Cl+CH2D2/1100> reaction, and the HCl(v=1) differential cross-section (DCS) of the Cl+CH2D2/2000>- reaction is more broadly side scattered than the HCl(v=1) DCS of the Cl+CH2D2/1100> reaction. The results can be explained by a simple spectator model and by noting that the /2000>- mode leads to a wider cone of acceptance for the reaction than the /1100> mode. These measurements represent the first example of mode selectivity observed in a differential cross section, and they demonstrate that vibrational excitation can be used to direct the reaction pathway of the Cl+CH2D2 reaction.  相似文献   

19.
Raman spectra (100-3200 cm(-1)) of polycrystalline samples of C(6)H(5)CH(2)NH(2)CH(3)H(2)PO(4).H(2)O were studied at temperature ranging from 77 to 350 K. By comparison with homologue compounds and calculated wavenumbers, an assignment of the observed bands is proposed. The thermal evolution of Raman spectra reveals an order-disorder phase transition at about 120 K involving the hydrogen bonds coupled with the distortion of the organic cations. The line at 244 cm(-1)assigned to tau(CH(3)) shows a remarkable evolution across the transition. Therefore, a careful analysis of the thermal evolution of this mode was performed using Porto model. The activation energy, obtained from the plot of Deltanu(1/2) versus temperature, is E(a)=1.27 kcal mol(-1). This value is of the same order of magnitude as the one found for homologue hydrogen bonded compounds.  相似文献   

20.
We have recorded the vibrational absorption spectrum of 1,1,1,2-tetrafluoroethane (HFC-134a) in the fundamental and first five CH-stretching overtone regions with the use of Fourier transform infrared, dispersive long-path, intracavity laser photoacoustic, and cavity ringdown spectroscopies. We compare our measured total oscillator strengths in each region with intensities calculated using an anharmonic oscillator local mode model. We calculate intensities with 1D, 2D, and 3D Hamiltonians, including one or two CH stretches and two CH stretches with the HCH bending mode, respectively. The dipole moment function is calculated ab initio with self-consistent-field Hartree-Fock and density functional theories combined with double- and triple-zeta-quality basis sets. We find that the basis set choice affects the total intensity more than the choice of the Hamiltonian. We achieve agreement between the calculated and measured total intensities of approximately a factor of 2 or better for the fundamental and first five overtones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号