首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The basicities and nucleophilicities along with prototautomerism of biologically active oxazolidin-4-one and its thio and azo analogs were investigated by semi-empirical methods. The oxo and thion protonation were found to be easier than that of azo protonation for 4-oxo and 4-thion derivatives whereas amino protonation was found to be easier than imino and azo protonation in 4-imino derivative. The preferred tautomeric form for 4-oxo and 4-thion derivatives were found to be the keto and thion forms, respectively, whereas the amino form was found to be preferred in 4-imino derivatives. An acceptable correlation between gas phase proton affinities and aqueous phase acidity constants as well as the correlation between nucleophilicity and acidity constants was observed.  相似文献   

2.
Photophysical and photochemical properties of 1-hydroxy-2-naphthoic acid (1,2-HNA) have been investigated experimentally by steady state and time domain fluorescence measurements and theoretically by Hartree-Fock (HF), configuration interaction at the single excitation (CIS) level, density functional theoretic (DFT), and semiempirical (AM1) methods. 1,2-HNA exhibits normal fluorescence that depends on its concentration, nature of the solvent, pH, temperature, and wavelength of excitation. It seems to form different emitting species in different media, akin to 3-hydroxy-2-naphthoic acid (3,2-HNA). The large Stokes shifted emission observed at pH 13 is attributed to species undergoing excited-state intramolecular proton transfer. Nonradiative transition seems to increase on protonation and decrease on deprotonation. AM1(PECI=8) calculations predict the absorption maximum (lambda(max) = 335.9 nm) in reasonable agreement with experiment (lambda(max) = 352 nm) for the neutral 1,2-HNA. They also predict a red shift in absorption on protonation and a blue shift on deprotonation as observed experimentally. CIS calculations tend to overestimate the energy gap and hence underestimate the absorption maxima between the ground and the excited electronic states of 1,2-HNA and its protonated and deprotonated forms. However, they do predict correctly that the excited state intramolecular proton transfer is likely to occur in the deprotonated form of 1,2-HNA and not in the neutral and the protonated forms. A single minimum is found in the potential energy profile for the ground state as well as the first excited state of 1,2-HNA and its protonated species. In contrast, a double minimum with a nominal barrier in between is predicted for the ground state and also the first three excited states of the deprotonated species. The keto form of the deprotonated species is found to be slightly less stable than the enol form in all the states investigated.  相似文献   

3.
The photophysics and photochemistry of nalidixic acid (NA) were studied as function of pH and solvent properties. The ground state of NA exhibits different protonated forms in the range of pH 1.8-10.0. Fluorescence studies showed that the same species exist at the lowest singlet excited state. Absorption experiments were carried out with NA and with the methylated analog of nalidixic acid (MNE) in different organic solvents and water pH 3, where the main species corresponds to that protonated at the carboxylic group. These studies and the DFT calculation of torsional potential energy profiles suggest that the most stable conformation of the NA in nonprotic solvents corresponds to a closed structure caused by the existence of intramolecular hydrogen bond. Absorption and fluorescence spectra were studied in sulfuric acid solution. The pK value (Ho -1.0) found in these conditions was attributed to the protonation of the 4' keto oxygen atom of the heterocyclic ring. Theoretical calculations (DFT/B3LYP/6-311G*) of the energies of the different monoprotonated forms of the NA and Fukui indexes (f(x)-) showed that the species with the proton attached to 4' keto oxygen atom is the most stable of all the cationic forms. MNE and enoxacin also showed the protonation of the 4' keto oxygen atom with similar pK values. The photodecomposition of NA is dependent on the medium properties. Faster decomposition rates were obtained in strong acid solution. In nonprotic solvents, a very slow decomposition rate was observed.  相似文献   

4.
In spite of recent advances towards understanding the mechanism of firefly bioluminescence, there is no consensus about which oxyluciferin (OxyLH2) species are the red and yellow‐green emitters. The crystal structure of Luciola cruciata luciferase (LcLuc) revealed different conformations for the various steps of the bioluminescence reaction, with different degrees of polarity and rigidity of the active‐site microenvironment. In this study, these different conformations of luciferase (Luc) are simulated and their effects on the different chemical equilibria of OxyLH2 are investigated as a function of pH by means of density functional theory with the PBE0 functional. In particular, the thermodynamic properties and the absorption spectra of each species, as well as their relative stabilities in the ground and excited states, were computed in the different conformations of Luc. From the calculations it is possible to derive the acid dissociation and tautomeric constants, and the corresponding distribution diagrams. It is observed that the anionic keto form of OxyLH2 is both the red and the yellow‐green emitter. Consequently, the effect of Luc conformations on the structural and electronic properties of the Keto‐(?1) form are studied. Finally, insights into the Luc‐catalyzed light‐emitting reaction are derived from the calculations. The multicolor bioluminescence can be explained by interactions of the emitter with active‐site molecules, the effects of which on light emission are modulated by the internal dielectric constant of the different conformations. These interactions can suffer also from rearrangement due to entry of external solvent and changes in the protonation state of some amino acid residues and adenosine monophosphate (AMP).  相似文献   

5.
The structures of 5-hydroxy and 5-amino derivatives of naphtho[2,3-h]quinoline-7,12-dione (anthraquinonepyridine) and their conjugate acids were investigated by experimental and computational [Pariser-Parr-Pople (PPP)] methods. The hydroxy derivative exists in the keto form, while the cation of the hydroxy form is formed during protonation; the amino derivative exists in the amino form but is converted to a cation with an imino structure upon protonation. In both cases the addition of a proton is accompanied by rearrangement of the -electon structure of the molecules. The assignment of the S * transitions in the electronic spectra of the bases and their conjugate acids is given on the basis of a quantum-chemical calculation.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 12, pp. 1648–1655, December, 1980.  相似文献   

6.
The spectral properties of o-(2-pyrrolylketo)benzoic acid and its N-methyl and N-benzyl analogs were investigated in order to detect ring-chain tautomerism. It is shown that the investigated acids exist in the open keto form. The corresponding derivatives involving the carbonyl group were obtained. The preparation of derivatives of the cyclic lactol form of the 2-pyrrolylketobenzoic acids is described.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 7, pp. 916–922, July, 1979.  相似文献   

7.
The protonation of the reagent 1,8-dihydroxynaphthalene-3,6-disulphonic-2,7-bis(azophenyl-p-arsonic) acid ("palladiazo") has been investigated by a spectrophotometric method in 0.25-18M sulphuric acid media. Graphical assessment of the experimental results points to the protonation of only one azo-group, although a two-stage protonation process cannot be conclusively ruled out at very high acidity. The first protonation instability constant is pK(9) = -(2.4 +/- 0.1) and the second is tentatively estimated as -7.4. Most of the current views on the complexation and protonation reactions of bis(azophenyl)chromotropic acid derivatives.with metal cations and protons are reviewed and critically discussed in some detail in order to interpret the experimental findings. It is concluded that the fully protonated palladiazo molecule exists in very concentrated acid media predominantly in the form of a symmetrical positively charged tautomeric quinonehydrazone proton complex species which is responsible for the appearance of a very strong single absorption band with a maximum at 665 run which gives the protonated reagent solutions a characteristic deep-emerald-green colour.  相似文献   

8.
Pyruvic acid and its isomers, including the enol tautomers and enantiomeric lactone structures, have been investigated at the B3LYP/6-311 + + G(3df,3pd) level, and it is found that a keto form with trans C(methyl)C(keto)C(acid)O(hydroxyl) and cis C(keto)C(acid)OH, and with one methyl hydrogen in a synperiplanar position with respect to the keto oxygen, is the most stable. This agrees with previous theoretical and experimental determinations. However, no minimum corresponding to protonated pyruvate could be located, although previous semiempirical calculations had found such structures. Decarboxylation by different possible routes was then studied. It was found that the direct formation of acetaldehyde, the most stable of the resulting C2H4O isomers, via a four-center-like transition state is the most feasible, although there is a high activation barrier of 70 kcal mol(-1). In contrast to semiempirical calculations, it is found that no hydroxyethylidene-carbon dioxide complex exists as a product, and no transition state leading to the dissociation to hydroxethylidene could be located.  相似文献   

9.
Five new polymorphs and one hydrated form of 2‐thiobarbituric acid have been isolated and characterised by solid‐state methods. In both the crystalline form II and in the hydrate form, the 2‐thiobarbituric molecules are present in the enol form, whereas only the keto isomer is present in crystalline forms I (reported in 1967 by Calas and Martinex), III , V and VI . In form IV , on the other hand, a 50:50 ordered mixture of enol/keto molecules is present. All new forms have been characterised by single‐crystal X‐ray diffraction, 1D and 2D (1H, 13C, and 15N) solid‐state NMR spectroscopy, Raman spectroscopy and X‐ray powder diffraction at variable temperature. It has been possible to induce keto–enol conversion between the forms by mechanical methods. The role of hydrogen‐bond interactions in determining the relative stability of the polymorphs and as a driving force in the conversions has been ascertained. To the best of the authors’ knowledge, the 2‐thiobarbituric family of crystal forms represents the richest collection of examples of tautomeric polymorphism so far reported in the literature.  相似文献   

10.
This work presents a theoretical mechanistic study of the protonation of pyridine in water clusters, at the B3LYP/cc-pVDZ theory level. Clusters from one to five water molecules were used. Starting from previously determined structures, the reaction paths for the protonation process were identified. For complexes of pyridine with water clusters of up to three water molecules just one transition state (TS) links the solvated and protonated forms. It is found that the activation energy decreases with the number of water molecules. For complexes of four and five water molecules two transition states are found. For four water molecules, the first TS links the starting solvated structure with a new, less stable, solvated form through a concerted proton transfer between a ring of water molecules. The second TS links the new solvated structure to the protonated form. Thus, protonation is a two-step process. For the five water molecules cluster, the new solvated structure is more stable than the starting one. This structure exhibits two double hydrogen bonds involving the pyridinic nitrogen and several water molecules. The second TS links the new structure with the protonated form. Now the process occurs in one step. In all cases considered, the proton transfers involve an interconversion between covalent and hydrogen bonds. For four and five water molecules, the second TS is structurally and energetically very close to the protonated form. As evidenced by the vibration frequencies, this is due to a flat potential energy hypersurface in the direction of the reaction coordinate. Determination of DeltaG at 298.15 K and 1 atm shows that the protonation of pyridine needs at least four water molecules to be spontaneous. The complex with five water molecules exhibits a large DeltaG. This value yields a pKa of 2.35, relatively close to the reported 5.21 for pyridine in water.  相似文献   

11.
IR and Raman spectra of MCl2(meso-2,3-diaminobutane), (M = Pd, Pt), have been recorded down to liquid nitrogen temperature or lower. It is shown that correlation coupling occurs between closely spaced hydrogen-bonded pairs of molecules, which form a “super molecule,” but not between all eight molecules in the unit cell. The lattice mode region is also understood in outline on the basis of motions of the “super molecules” Methyl torsional modes appear to be near 140 cm?1.  相似文献   

12.
Summary: A mathematical model of the acid catalyzed 1,3-propanediol polymerization has been developed. Two catalysts investigated include sulfuric acid and superacid (tetrafluoroethane sulfonic acid or triflic acid). Based on a detailed reaction mechanism, population and mass balance equations have been derived for small molecules as well as for polymeric species of numerous chain distributions, which are distinguishable in terms of protonation state and end group functionality. Due to the interaction of the sulfuric acid catalyst with the polymer ends, a novel, dual index polymer chain distribution was derived and implemented. The model has been validated with various sets of experimental data obtained in a lab-scale reactor setup. Dynamic model outputs such as monomer concentration, molecular weight averages, unsaturated and sulfate end groups, water evaporation rate and sulfate middle groups have been compared with experimental data of sulfuric and super acid catalyzed polymerization runs. Very good agreement between model predictions and experimental data has been obtained for both catalyst systems over an extended range of conditions using the same set of model parameter values. It is worth noting that the model is also capable of predicting polymerization equilibrium.  相似文献   

13.
Ground state geometries of the four tautomeric forms keto‐N9H, keto‐N7H, enol‐N9H, and enol‐N7H of guanine were optimized in the gas phase at the RHF level using a mixed basis set consisting of the 4‐31G basis set for all the atoms except the nitrogen atom of the amino group for which the 6‐311+G* basis set was used. These calculations were also extended to hydrogen‐bonded complexes of three water molecules with each of the keto‐N9H (G9‐3W) and keto‐N7H (G7‐3W) forms of guanine. Relative stabilities of the four above‐mentioned tautomers of guanine as well as those of G9‐3W and G7‐3W complexes in the ground state in the gas phase were studied employing the MP2 correlation correction. In aqueous solution, relative stabilities of these systems were studied using the MP2 correlation correction and polarized continuum model (PCM) or the isodensity surface polarized continuum model (IPCM) of the self‐consistent reaction field (SCRF) theory. Geometry optimization in the gas phase at the RHF level using the 6‐31+G* basis set for all atoms and the solvation calculations in water at the MP2 level using the same basis set were also carried out for the nonplanar keto‐N9H and keto‐N7H forms of guanine. Thus, it is shown that among the different tautomers of guanine, the keto‐N7H form is most stable in the gas phase, while the keto‐N9H form is most stable in aqueous solution. It appears that both the keto‐N9H and keto‐N7H forms of guanine would be present in the ground state, particularly near the aqueous solution–air interface. Vertical excitation and excited state geometry optimization calculations were performed using configuration interaction involving single electron excitation (CIS). It is found that the absorption spectrum of guanine would arise mainly due to its keto‐N9H form but the keto‐N7H form of the same would also make some contribution to it. The enol‐N9H and enol‐N7H forms of the molecule are not expected to occur in appreciable abundance in the gas phase or aqueous media. The normal fluorescence spectrum of guanine in aqueous solution with a peak near 332 nm seems to originate from the lowest singlet excited state of the keto‐N7H form of the molecule while the fluorescence of oxygen‐rich aqueous solutions of guanine with a peak near 450 nm appears to originate from the lowest singlet excited state of the keto‐N9H form of the molecule. The origin of the slow damped spectral oscillation observed in the absorption spectrum of guanine has been explained. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 826–846, 2000  相似文献   

14.
Formation of associates of N,N-dimethylformamide (DMF) molecules was studied to clarify their role in photoluminescent activity of protonated DMF solutions. The association of DMF molecules was observed in dilute aqueous solutions at concentrations of DMF above approximately 4x10(-2) M. The association is enhanced when the CO bond of the DMF molecule is activated by protonation with hydrochloric acid, which leads to appearance of an excimeric emission at approximately 530 nm. The excitation spectrum of the excimeric emission showed the excitation maximum in the region of the absorption of DMF associates, which is a first evidence of a more complex mechanism of excimer formation originating from excitation of associated rather than monomeric molecules in the ground state. A simple approach was provided to evaluate a number of molecules in the excimer structure. An original theory has been developed, and it was calculated that the DMF excimer has a dimeric nature. A model of the excimer formation was proposed, which suggests that a hydrogen-bonded associate is an intermediate form leading to the excimeric structure upon excitation. It was observed that DMF possesses also a monomeric emission with the emission maximum at approximately 385 nm, which was attributed to the intramolecular charge-transfer process. It has been found that the change in structure of the DMF associates via the liquid-solid phase transition affects both excitation and emission bands of excimers, so that the excimeric emission shifts to the blue region and intermixes with the emission of DMF monomers.  相似文献   

15.
Formation of intramolecular hydrogen bonds leads to structural modifications in the whole molecule, which are discussed on the basis of B3LYP/6-31G(d,p) calculations. The energy and the structure of various hydrogen-bonded and open conformers are considered for two groups of ortho-substituted phenols–N-dimethylaminomethylphenols (Mannich bases) and N-methylbenzylideneamines (Schiff bases). The energy of intramolecular hydrogen bond formation in Mannich bases was corrected for non-bonded interactions within the molecules, based on a thermodynamic cycle. Structural data were used to estimate the fraction of the ortho-quinoid (keto) form in particular tautomers. It is shown that proton transfer in Schiff bases leads to an increase of this fraction to about 40%, while opening of the hydrogen bond in the proton transferred form increases the keto fraction to 70%.  相似文献   

16.
Photoreaction dynamics of 2-(3-benzoylphenyl)propionic acid (ketoprofen, KP), one of nonsteroidal anti-inflammatory drugs, with histidine in a phosphate buffer solution (pH 7.4) was investigated with the laser flash photolysis. The deprotonated form of KP (KP(-)) was decarboxylated via UV laser excitation to form a carbanion. It was found that histidine accelerates the protonation reaction of the carbanion to 3-ethylbenzophenone ketyl biradical (3-EBPH) for the first time. The experimental results of the photoreaction of KP with alanine as well as the photoreaction of KP with 4-methylimidazole (a part of the side chain of histidine) in methanol, clearly showed that the protonated form of histidine is a key species for the protonation reaction of the carbanion. These series of the initial reactions should result in the occurrence of photosensitization in vivo. The reaction mechanism was discussed in detail.  相似文献   

17.
A 1:1 hydrogen-bonded complex between 2-pyridone and formic acid has been characterized using laser-induced-fluorescence excitation and dispersed fluorescence spectroscopy in a supersonic jet expansion. Under the same expansion condition, the fluorescence signal of the tautomeric form of the complex (2-hydroxypyridine...formic acid) is absent, although both the bare tautomeric molecules exhibit well-resolved laser-induced-fluorescence spectra. Quantum chemistry calculation at the DFT/B3LYP/6-311++G** level predicts that in the ground electronic state the activation barrier for tautomerization from hydroxy to keto form in bare molecules is very large (approximately 34 kcal/mol). However, the process turns out to be nearly barrierless when assisted by formic acid, and double proton transfer occurs via a concerted mechanism.  相似文献   

18.
This work presents a successful application of a recently reported supramolecular strategy for stabilization of metastable tautomers in cocrystals to monocomponent, non‐heterocyclic, tautomeric solids. Quantum‐chemical computations and solution studies show that the investigated Schiff base molecule, derived from 3‐methoxysalicylaldehyde and 2‐amino‐3‐hydroxypyridine ( ap ), is far more stable as the enol tautomer. In the solid state, however, in all three obtained polymorphic forms it exists solely as the keto tautomer, in each case stabilized by an unexpected hydrogen‐bonding pattern. Computations have shown that hydrogen bonding of the investigated Schiff base with suitable molecules shifts the tautomeric equilibrium to the less stable keto form. The extremes to which supramolecular stabilization can lead are demonstrated by the two polymorphs of molecular complexes of the Schiff base with ap . The molecules of both constituents of molecular complexes are present as metastable tautomers (keto anion and protonated pyridine, respectively), which stabilize each other through a very strong hydrogen bond. All the obtained solid forms proved stable in various solid‐state and solvent‐mediated methods used to establish their relative thermodynamic stabilities and possible interconversion conditions.  相似文献   

19.
The reaction mechanism of (E)‐methyl 3‐(2‐aminophenyl)acrylate ( A ) with phenylisothiocyanate ( B ) as well as the vital roles of substrate A and solvent water were investigated under unassisted, water‐assisted, substrate A ‐assisted, and water‐ A ‐assisted conditions. The reaction proceeds with four processes via nucleophilic addition, deprotonation and protonation, intramolecular cyclization with hydrogen transfer, and keto–enol tautomerization. According to the different H‐shift mode, two possible types of H‐shift P1 and P2 are carefully investigated to identify the most preferred pathway, differing in the ? NH2 group deprotonation and ? CH group of A protonation processes. It is found that substrate A and water not only act as reactant and solvent, but also as catalyst, proton shuttle, and stabilizer in effectively lowering the energy barrier. Therefore, the results demonstrate that the strong donating and accepting ability of ? NH2 group on A and the presence of bulk water are the keys to the title reaction proceed. © 2016 Wiley Periodicals, Inc.  相似文献   

20.
A number of 2-methylthio-6-methyl-4-alkyl- and alkylaminopyrimidines, as well as their salts produced by the reaction with methyl p-toluenesulfonate and trifluoroacetic acid, were investigated. The quantum chemical and experimental IR and Raman spectral methods were used to determine the preferential isomeric forms of the molecules of studied compounds, whose convenient spectral markers were revealed. The starting pyrimidines and their salts were found to exist predominantly as an amino form. The salt formation proceeds via the methylation (protonation) of the N1 atom of pyrimidine ring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号