首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
陈斌  张宁  李蓉  李晨  樊安 《色谱》2017,35(11):1113-1119
以新型环保多齿螯合剂——亚氨基二琥珀酸(IDS)为配体,在优化条件下,合成了IDS-Silica固定相。用电位滴定法测定了固定相上IDS的键合量。考察了IDS-Silica柱的色谱特性以及金属螯合特性。使用制备柱成功地分离了标准蛋白质混合物,该制备柱展现出了典型的阳离子交换特性。用电感耦合等离子体原子发射光谱法考察了金属离子在IDS-Silica固定相上的键合特性。结果表明,金属离子在IDS-Silica固定相上键合量的变化规律与它们同该固定相螯合的强弱顺序一致。通过比较金属Cu~(2+)在4种不同氨羧类配体硅胶柱上的键合量,发现IDS对金属离子具有强的螯合能力。IDS对金属离子的强螯合特性为其今后作为固定金属亲和色谱填料奠定了基础,为缓解亲和柱在使用过程中固定金属离子的流失提供了一种有效的解决方法。  相似文献   

2.
介绍了固定金属离子亲和色谱法(IMAC)的方法原理、金属螯合柱的制备、固定金属离子与蛋白质的相互作用以及影响这些作用的因素、不同色谱条件下各种作用力对蛋白质保留值的贡献、蛋白质的洗脱原理和IMAC在蛋白质分离纯化中的应用,论述了IMAC的特点、不足、克服的方法和今后应解决的问题。  相似文献   

3.
New immobilized metal ion affinity chromatography (IMAC) matrices containing a high concentration of metal-chelate moieties and completely coated with inert flexible and hydrophilic dextrans are here proposed to improve the purification of polyhistidine (poly-His) tagged proteins. The purification of an interesting recombinant multimeric enzyme (a thermoresistant beta-galactosidase from Thermus sp. strain T2) has been used to check the performance of these new chromatographic media. IMAC supports with a high concentration (and surface density) of metal chelate groups promote a rapid adsorption of poly-His tagged proteins during IMAC. However, these supports also favor the promotion of undesirable multi-punctual adsorptions and problems may arise for the simple and effective purification of poly-His tagged proteins: (a) more than 30% of the natural proteins contained in crude extracts from E. coli become adsorbed, in addition to our target recombinant protein, on these IMAC supports via multipoint weak adsorptions; (b) the multimeric poly-His tagged enzyme may become adsorbed via several poly-His tags belonging to different subunits. In this way, desorption of the pure enzyme from the support may become quite difficult (e.g., it is not fully desorbed from the support even using 200 mM of imidazole). The coating of these IMAC supports with dextrans greatly reduces these undesired multi-point adsorptions: (i) less than 2% of natural proteins contained in crude extracts are now adsorbed on these novel supports; and (ii) the target multimeric enzyme may be fully desorbed from the support using 60 mM imidazole. In spite of this dramatic reduction of multi-point interactions, this dextran coating hardly affects the rate of the one-point adsorption of poly-His tagged proteins (80% of the rate of adsorption compared to uncoated supports). Therefore, this dextran coating of chromatographic matrices seems to allow the formation of strong one-point adsorptions that involve small areas of the protein and support surface. However, the dextran coating seems to have dramatic effects for the prevention of weak or strong multipoint interactions that should involve a high geometrical congruence between the enzyme and the support surface.  相似文献   

4.
Ni2+ complexes of the chelating nonporous and porous bead sorbents based on methacrylic esters crosslinked with ethylene dimethacrylate were used in isolation of the horseradish peroxidase-specific immunoglobulin IgG1 from the crude mouse ascitic fluid by immobilized metal ion affinity chromatography (IMAC). Iminodiacetic and aspartic acids were attached to porous poly(glycidyl methacrylate) beads differing in size, morphology and chemical composition. Ethylenediaminetriacetic acid and quinolin-8-ol chelating groups were attached mainly to the surface hydroxyl groups in nonporous poly(diethylene glycol methacrylate) beads through spacers. The latter sorbents exhibited better kinetic characteristics than the former but a very low IgG1 sorption capacity. In a single-step IMAC procedure, the best efficiency in the specific IgG1 purification was obtained with porous sorbents (recovery 92%, purity 73%). Differences in IMAC separations are discussed from the point of view of morphology of polymer beads as well as of the type and concentration of chelating ligands.  相似文献   

5.
FLAG, a short hydrophilic peptide consisting of eight amino acids (DYKDDDDK), has been widely used as a fusion tag for the purification and detection of a wide variety of recombinant proteins. One of the monoclonal antibodies against this peptide, anti-FLAG M2, recognises a FLAG peptide sequence at the N terminus, Met-N terminus, C terminus, or internal site of a fusion protein and has been extremely useful for the detection, identification, and purification of recombinant proteins. Nevertheless, detailed binding specificity of anti-FLAG M2 has yet to be determined. In the current study, a phage display combinatorial peptide library was used to determine that the motif DYKxxD encompasses the critical amino acid residues responsible for the binding of FLAG peptide to this antibody. This study demonstrates the utility of phage display technology and helps to elucidate the mode of action of this detection system.  相似文献   

6.
The incorporation of unnatural chelating amino acids in short peptide sequences leads to lanthanide-binding peptides with a higher stability than sequences built exclusively from natural residues. In particular, the hexadentate peptide P(22), which incorporates two unnatural amino acids Ada(2) with aminodiacetate chelating arms, showed picomolar affinity for Tb(3+). To design peptides with higher denticity, expected to show higher affinity for Ln(3+), we synthesized the novel unnatural amino acid Ed3a(2) which carries an ethylenediamine triacetate side-chain and affords a pentadentate coordination site. The synthesis of the derivative Fmoc-Ed3a(2)(tBu)(3)-OH, with appropriate protecting groups for direct use in the solid phase peptide synthesis (Fmoc strategy), is described. The two high denticity peptides P(HD2) (Ac-Trp-Ed3a(2)-Pro-Gly-Ada(2)-Gly-NH(2)) and P(HD5) (Ac-Trp-Ada(2)-Pro-Gly-Ed3a(2)-Gly-NH(2)) led to octadentate Tb(3+) complexes with femtomolar stability in water. The position of the high denticity amino acid Ed3a(2) in the hexapeptide sequence appears to be critical for the control of the metal complex speciation. Whereas P(HD5) promotes the formation of polymetallic species in excess of Ln(3+), P(HD2) forms exclusively the mononuclear complex. The octadentate coordination of Tb(3+) by both P(HD) leads to total dehydration of the metal ion in the mononuclear complexes with long luminescence lifetimes (>2 ms). Hence, we demonstrated that unnatural amino acids carrying polyaminocarboxylate side-chains are interesting building blocks to design high affinity Ln-binding peptides. In particular the novel peptide P(HD2) forms a unique octadentate Tb(3+) complex with femtomolar stability in water and an improvement of the luminescence properties with respect to the trisaquo TbP(22) complex by a factor of 4.  相似文献   

7.
The efficient refolding of recombinant proteins produced in the form of inclusion bodies (IBs) in Escherichia coli still is a complicated experimental problem especially for large hydrophobic highly disulfide-bonded proteins. The aim of this work was to develop highly efficient and simple refolding procedure for such a protein. The recombinant C-terminal fragment of human alpha-fetoprotein (rAFP-Cterm), which has molecular weight of 26 kDa and possesses 6 S-S bonds, was expressed in the form of IBs in E. coli. The C-terminal 7× His tag was introduced to facilitate protein purification and refolding. The refolding procedure of the immobilized protein by immobilized metal chelating chromatography (IMAC) was developed. Such hydrophobic highly disulfide-bonded proteins tend to irreversibly bind to traditionally used agarose-based matrices upon attempted refolding of the immobilized protein. Indeed, the yield of rAFP-Cterm upon its refolding by IMAC on agarose-based matrix was negligible with bulk of the protein irreversibly stacked to the resin. The key has occurred to be using IMAC based on silica matrix. This increased on-resin refolding yield of the target protein from almost 0 to 60% with purity 98%. Compared to dilution refolding of the same protein, the productivity of the developed procedure was two orders higher. There was no need for further purification or concentration of the renatured protein. The usage of silica-based matrix for the refolding of immobilized proteins by IMAC can improve and facilitate the experimental work for difficult-to-refold proteins.  相似文献   

8.
Polypeptides for use in affinity chromatography of factor VIII were identified using phage display technology. Phage libraries were designed to express polypeptide fusions containing five to seven residues flanked by two cysteines that form a disulfide bond. Individual bacteriophage were selected for the ability of these polypeptides to bind factor VIII, and then release the protein under mild elution conditions. Strong consensus sequences were observed that appear to be necessary for this reversible interaction. Chemically synthesized ligands identified by this screening were immobilized onto a chromatographic support and used for affinity purification of factor VIII from a complex feedstream. A chromatographic step was developed that provided a 10000-fold reduction in host cell proteins and DNA, while providing exceptional product recovery.  相似文献   

9.
Aluminium (iii) is one of the most abundant metal ions found in soil. Typically, Al(+3) is bound to minerals, but its bioavailability and toxicity toward vascular plants increases with increasing soil acidity. Ectomycorrhizal fungi, which live symbiotically on the roots of numerous woody plants, often confer Al(+3) resistance to host plants by reducing metal availability to the plant by unknown mechanisms. A potential mechanism of detoxification is binding of the Al(+3) by organic compounds that are exuded by the fungi into the surrounding soil and solution. A novel method has been developed to purify and characterize Al(+3) binding ligands from Pisolithus tinctorius exudate solutions using Al(+3) immobilized metal affinity chromatography (IMAC), reversed phase chromatography, and mass spectrometry. Fungal exudates produced by P. tinctorius exhibit a strong binding capacity for Al(+3), allowing their selective enrichment and collection using this IMAC method. Elution of the ligands requires the use of high pH. RP-HPLC separation and elemental analysis of the IMAC elutent indicates that the Al(+3) and the exudate ligands both elute from the column but are not bound in a complex. Thus, reversed phase HPLC at pH 10 is used for separation of the ligands and Al(+3) prior to MS analysis. The strongest binding IMAC fraction is analyzed by electrospray ionization mass spectrometry in positive and negative ion modes. This report provides new methods for the direct purification and analysis of naturally occurring ligands that bind hard metal ions.  相似文献   

10.
Endotoxins (also known as lipopolysaccharides (LPS)) are undesirable by products of recombinant proteins, purified from Escherichia coli. LPS can be considered stable under a wide range of temperature and pH, making their removal one of the most difficult tasks in downstream processes during protein purification. The inherent toxicity of LPS makes their removal an important step for the application of these proteins in several biological assays and for a safe parenteral administration. Immobilized metal affinity chromatography (IMAC) enables the affinity interactions between the metal ions (immobilized on the support through the chelating compound) and the target molecules, thus enabling high efficiency separation of the target molecules from other components present in a mixture. Affinity chromatography is applied with Ca2+ iminodiacetic acid (IDA) to remove most of the LPS contaminants from the end product (more than 90%). In this study, the adsorption of LPS on an IDA-Ca2+was investigated. The adsorption Freundlich isotherm of LPS-IDA-Ca2+provides a theoretical basis for LPS removal. It was found that LPS is bound mainly by interactions between the phosphate group in LPS and Ca2+ligands on the beads. The factors such as pH (4.0 or 5.5) and ionic strength (1.0 mol/L) are essential to obtain effective removal of LPS for contaminant levels between endotoxin’ concentration values less than 100 EU/mL and 100000 EU/mL. This new protocol represents a substantial advantage in time, effort, and production costs.  相似文献   

11.
采用点击化学的方法将自然界中的天冬氨酸(aspartic acid)键合到硅球上(命名为Click Asp),并将Fe3+配位到Click Asp上,合成固定金属离子亲和色谱(IMAC)材料(Fe3+-Click Asp);采用红外光谱、X射线电子能谱和扫描电镜等表征证明Fe3+-Click Asp成功合成。将此IMAC材料用于蛋白质酶解液和牛奶中的磷酸化肽的富集,实现了磷酸化肽的高选择性富集。本研究为磷酸化蛋白质组学提供了新材料和新方法。  相似文献   

12.
The peptide substrate specificity of Tie-2 was probed using the phage display method in order to identify efficient substrate for high throughput screening. Two random peptide libraries, pGWX3YX4 and pGWX4YX4, were constructed, in which all twenty amino acid residues were represented at the X positions flanking the fixed tyrosine residue Y. A fusion protein of GST and the catalytic domain of human Tie-2 was used to perform the phage phosphorylation. The phosphorylated phage particles were enriched by panning over immobilized anti-phosphotyrosine antibody pY20 for a total of 5 rounds. Four phage clones (3T61, 3T68, C1-90 and D1-15) that express a peptide sequence that can be phosphorylated by the recombinant catalytic domain of human Tie-2 were identified. Synthetic peptides made according to the sequences of the 4 selected clones from the two libraries, which had widely different sequences, were active substrates of Tie-2. Kinetic analysis revealed that D1-15 had the best catalytic efficiency with a k(cat)/K(m) of 5.9x10(4) M(-1) s(-1). Three high throughput screening assay formats, dissociation-enhanced lanthanide fluoroimmunoassay (DELFIA), radioactive plate binding (RPB) and time-resolved fluorescent resonance energy transfer (TR-FRET) were developed to assess the suitability of these phage display selected peptides in screening Tie-2 inhibitors. Three out of four peptides were functional in the DELFIA assay and D1-15 was functional in the TR-FRET assay.  相似文献   

13.
In this investigation, several peptides containing an increasing number of histidine residues have been designed and synthesised. The peptides involved repeat units of either the pentameric EAEHA or the tetrameric HLLH sequence motifs. Adsorption isotherms for these synthetic peptides and hexahistidine (hexa-His) as a control substance were measured under batch equilibrium binding conditions with an immobilised Cu(II)-iminodiacetic acid (IDA) sorbent. The experimental data were analysed in terms of Langmuirean binding behaviour. In common with previous studies with synthetic peptides, these investigations have demonstrate that the sequential organisation of the histidine side chains in these peptides can affect the selectivity of the coordination interactions with borderline metal ions in immobilised metal ion affinity chromatographic systems. The results also confirm that peptides selected on the basis of their potential to form amphipathic secondary structures with their histidine residues presented on one face of the molecule can exhibit equivalent or higher affinity constants towards copper ions than hexa-His, although they contain fewer histidine residues. These findings are thus relevant to the selection of peptides produced inter alia by combinatorial synthetic procedures to have enhanced binding properties for Cu(II) or Ni(II) ions, or intended for use as peptide tags in the fusion handle approach for the affinity chromatographic purification of recombinant proteins.  相似文献   

14.
Immobilized metal ion affinity chromatography (IMAC) is a highly versatile separation method based on interfacial interactions between biopolymers in solution and metal ions fixed to a solid support, which is usually a hydrophilic cross-linked polymer.Polymer-fixed Zn(II), Ni(II), Co(II) and Cu(II) are particularly well suited for fractionation of proteins primarily on the basis of their relative content of surface-located imidazole residues but also of Trp and Cys residues as well as terminal amino groups.IMA methods can also be devised for purification of phosphoproteins and calcium-binding proteins. In some instances, the performance of IMA gels is comparable to that of biospecific affinity-based adsorbents. In fact IMA gels may, by sandwich techniques, occasionally be converted to biospecific adsorbents.Selectivity can be varied by choice of type of ligand and metal ion as well as by varying the modes of elution, including affinity desorption.  相似文献   

15.
Affinity tags are efficient tools for protein purification. They allow simple one-step purification of proteins to high purity. However, in some cases the tags cause structural and functional changes in a protein, and need to be removed. Therefore, affinity tags that are readily introduced into proteins with minimal perturbation and have specific affinity for purification are desired. Herein, two metal-chelating amino acids derived from 2,2′-bipyridine and 8-hydroxyquinoline were genetically incorporated into glutathione S-transferase (GST) and the mutant proteins were purified by using the metal ion affinity of the unnatural amino acids. The purification of the GST mutants containing 2-amino-3-(8-hydroxyquinolin-3-yl)propanoic acid (HQA) showed that the proteins could be efficiently enriched in Ni–NTA by the metal ion affinity of the unnatural amino acid and purified to excellent purity. This method should be very useful for general protein affinity purification, especially for proteins whose structure or function is affected by affinity tags fused to N- or C-terminals.  相似文献   

16.
A new method for separation of three forms of superoxide dismutase (SOD) using immobilised metal affinity chromatography (IMAC) is reported. Fe-, Mn- and Cu/Zn-SODs were eluted sequentially from Cu(2+)-IMAC column with an increasing gradient of a counter ion (NH+4) run in combination with an increasing pH gradient (6.8-7.8). The combined gradient elution method resulted in separation of SODs with high resolution, the three proteins being eluted in electrophoretically homogeneous forms. Similar preparation could not be achieved by either increasing gradient of a counter ion or decreasing pH gradients used separately. The described methodology has been successfully applied for separation of three SODs from a protozoan parasite, indicating that this combined gradient elution system for IMAC offers new possibilities for the high-resolution separation of proteins exhibiting only minor differences in their amino acid composition and structure.  相似文献   

17.
A C-terminally polyhistidine-tagged protein of Schistosoma japonicum glutathione-S-transferase, named as SjGST/His, and its Cys85-->Ser, Cys138-->Ser, and Cys178-->Ser site-directed mutants were prepared and highly expressed in Escherichia coli. Both immobilized metal affinity chromatography (IMAC) and glutathione (GSH) affinity chromatography were used to purify these four enzymes. All of them were purified with equal efficiency by Ni2+-chelated nitrilotriacetic acid agarose gel, but not by GSH Sepharose 4B gel. The protein amounts of wild-type and Cys85-->Ser enzymes purified by the latter gel were three to seven-fold greater than those of the other two enzymes purified by the same gel, while their specific activities were two-fold lower, presumably because of the occurrence of noncovalent aggregation. Both purification methods yielded highly pure enzymes, while there were minor amounts of inter- and intra-disulfide forms in the IMAC purified enzymes except for the Cys85-->Ser mutant. Addition of dithiothreitol to GSH-affinity purified enzymes shifted all of their mass spectra of matrix-assisted laser desorption/ionization-time of flight mass spectrometry toward low molecular-mass regions, while addition of GSH to IMAC purified enzymes shifted the spectra toward high molecular-mass regions. The shift values of wild-type enzyme were larger than those of the three mutants, indicating that the Cys85, Cys138, and Cys178 residues were S-thiolated by GSH during the GSH-affinity purification. This result was confirmed by isoelectric focusing. These findings suggest that IMAC is more efficient than the conventional GSH-affinity system for the purification of SjGST/His enzyme, especially for its mutants and fusion proteins.  相似文献   

18.
Undesired adsorption of host cell proteins poses a big challenge for immobilized metal-ion affinity chromatography (IMAC) purification. In this study, by using His6-tagged protein Fab OPG C11 from Escherichia coli fermentation as a model, we found that the presence of low concentrations of EDTA-Mg2+ in feed streams weakens the adsorption but makes it more specific towards polyhistidine tag. By combining EDTA-Mg2+ treatment and periplasmic extraction, we developed a one-step purification procedure for His6-tagged recombinant Fab OPG C11 using Ni-IDA (iminodiacetic acid) chromatography. This procedure eliminated the buffer exchange step after periplasmic extraction, which is usually required before IMAC in order to remove EDTA. In addition to savings on time and cost, this procedure eliminates undesired adsorption of most host cell proteins thus significantly improves the purity of polyhistidine-tagged recombinant proteins. The strategy of EDTA-Mg2+ treatment may have general application potentials.  相似文献   

19.
Proteins can be distinguished by exploiting complementarity between a histidine's microenvironment and a metal-chelate ligand in metal-affinity separations. The partitioning behavior of three myoglobins was investigated in aqueous two-phase polyethylene glycol-dextran systems containing polyethylene glycol derivatized with Cu(II) complexes of the L- and D-isomers of methionine and aspartate. TSK chromatographic supports derivatized with the methionine complexes were used to study retention of these proteins in metal-affinity chromatography. In the partitioning studies, the amino acid metal chelates exhibit selectivities for the myoglobins that are different from that of Cu(II)-iminodiacetate. Significant differences in selectivity based on the chiral nature of the amino acid complexes were also observed. The chromatographic selectivities of the chelating ligands exhibit little variation, however, suggesting that interactions occurring in solution but not on a surface play an important role in protein binding to the Cu(II)-amino acid-PEG complexes. In solution, the Cu(II)-amino acid complexes are sensitive probes of the microenvironments of surface histidines. The choice of the metal chelate affinity ligand offers a powerful means by which the selectivity of metal-affinity separations can be altered.  相似文献   

20.
This article has proposed an artificial chaperone-assisted immobilized metal affinity chromatography (AC-IMAC) for on-column refolding and purification of histidine-tagged proteins. Hexahistidine-tagged enhanced green fluorescent protein (EGFP) was overexpressed in Escherichia coli, and refolded and purified from urea-solubilized inclusion bodies by the strategy. The artificial chaperone system was composed of cetyltrimethylammonium bromide (CTAB) and β-cyclodextrin (β-CD). In the refolding process, denatured protein was mixed with CTAB to form a protein–CTAB complex. The mixture was then loaded to IMAC column and the complex was bound via metal chelating to the histidine tag. This was followed by washing with a refolding buffer containing β-CD that removed CTAB from the bound protein and initiated on-column refolding. The effect of the washing time (i.e., on-column refolding time) on mass and fluorescence recoveries was examined. Extensive studies by comparison with other related refolding techniques have proved the advantages of AC-IMAC. In the on-column refolding, the artificial chaperone system suppressed protein interactions and facilitated protein folding to its native structure. So, the on-column refolding by AC-IMAC led to 99% pure EGFP with a fluorescence recovery of 80%. By comparison at a similar final EGFP concentration (0.6–0.8 mg/mL), this fluorescence recovery value was not only much higher than direct dilution (14%) and AC-assisted refolding (26%) in bulk solutions, but also superior to its partner, IMAC (60%). The operating conditions would be further optimized to improve the refolding efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号