首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We demonstrate both theoretically and experimentally that the combination of vibrational spectroscopic techniques on samples can be used to deduce more detailed structural information of interfacial proteins and peptides. Such an approach can be used to elucidate structures of proteins or peptides at interfaces, such as at the solid/liquid interface or in cell membranes. We also discuss that the controlled perturbations may provide more measured parameters for structural studies on such proteins and peptides. In this paper, we will demonstrate that optical spectroscopic techniques such as polarized Fourier transform infrared spectroscopy (FTIR), sum frequency generation (SFG) vibrational spectroscopy, and higher order nonlinear vibrational spectroscopies can be used to deduce different and complementary structural information of molecules at interfaces (e.g., orientation information of certain functional groups and secondary structures of interfacial proteins). Also, we believe that controlled perturbations on samples, such as variation of sample temperature, application of electrical fields, and alternation of substrate roughness, can provide more detailed information regarding the interfacial structures of proteins and peptides. The development of nonlinear vibrational spectroscopies, such as SFG and four-wave mixing vibrational spectroscopy, to examine interfacial protein and peptide structures, and introduction of external perturbations on samples should be able to substantially advance our knowledge in understanding structures and thus functions of proteins and peptides at interfaces.  相似文献   

2.
Detection of amide I signals of interfacial proteins in situ using SFG   总被引:2,自引:0,他引:2  
In this Communication, we demonstrate the novel observation that it is feasible to collect amide signals from polymer/protein solution interfaces in situ using sum frequency generation (SFG) vibrational spectroscopy. Such SFG amide signals allow for acquisition of more detailed molecular level information of entire interfacial protein structures. Proteins investigated include bovine serum albumin, mussel protein mefp-2, factor XIIa, and ubiquitin. Our studies indicate that different proteins generate different SFG amide signals at the polystyrene/protein solution interface, showing that they have different interfacial coverage, secondary structure, or orientation.  相似文献   

3.
Mytilus edulis foot protein Mefp-3 serves as a primer in the formation of adhesive plaques that attach the mussel to solid surfaces in its immediate environment. The adsorption behavior of this protein on various materials of different hydrophobicity was studied using sum frequency generation (SFG) vibrational spectroscopy. By collecting SFG signals from side chains of these amino acids and from secondary structures of the protein, we have determined that this protein adopts different conformations at different interfaces, depending on hydrophobicity of the contact medium and specific chemical group interactions. We have also demonstrated that SFG has the potential to track the interfacial conformations of a single amino acid in a protein.  相似文献   

4.
We demonstrated that sum frequency generation (SFG) vibrational spectroscopy can distinguish different secondary structures of proteins or peptides adsorbed at solid/liquid interfaces. The SFG spectrum for tachyplesin I at the polystyrene (PS)/solution interface has a fingerprint peak corresponding to the B1/B3 mode of the antiparallel beta-sheet. This peak disappeared upon the addition of dithiothreitol, which can disrupt the beta-sheet structure. The SFG spectrum indicative of the MSI594 alpha-helical structure was observed at the PS/MSI594 solution interface. This research validates SFG as a powerful technique for revealing detailed secondary structures of interfacial proteins and peptides.  相似文献   

5.
Recent advances in the collection and interpretation of surface-sensitive vibrational spectroscopic measurements have made it possible to study the orientation of peptides and proteins in situ in a biologically relevant environment. However, interpretation of sum frequency generation (SFG) and attenuated total reflectance Fourier transform infrared (ATR-FTIR) vibrational spectroscopy is hindered by the fact that orientation cannot be inferred without some prior knowledge of the protein structure. In this work, molecular dynamics simulations were used to study the interfacial orientation and structural deformation of the short β-sheet peptide tachyplesin I at the polystyrene/water interface. By combining these results with ATR-FTIR and SFG measurements, reasonable agreement was found with the simulation results, suggesting that tachyplesin I lies parallel to the surface, although the simulation results imply a broader distribution of peptide twist angles than could be characterized using available experimental measurements. The interfacial structure was found to be deformable even when disulfide bonds were preserved, and these local deviations from a purely extended β-sheet conformation may be of importance to future developments in the interpretation of SFG and ATR-FTIR spectra.  相似文献   

6.
家蝇幼虫抗菌肽MDL-1的构象分析   总被引:1,自引:0,他引:1  
用红外光谱、圆二色谱和荧光光谱研究家蝇幼虫抗菌肽MDL-1的结构特征及其在不同条件下的构象变化. 红外光谱检测结果显示抗菌肽MDL-1结构中含有螺旋、无规卷曲、折叠构象的吸收特征; 圆二色谱显示抗菌肽MDL-1结构相对比较稳定, 抗菌肽在不同浓度溶液中的构象发生改变; 荧光光谱法研究发现家蝇幼虫抗菌肽MDL-1在280 nm波长的激发光下, 荧光光谱为Tyr残基和Trp残基共同提供, 而且Trp残基不是位于抗菌肽分子的表面, 而是位于分子的内部, 该研究结果为进一步探讨抗菌肽的抗菌机理奠定了基础.  相似文献   

7.
隐藏高分子界面及生物界面分子结构的和频振动光谱研究   总被引:1,自引:0,他引:1  
陈战 《物理化学学报》2012,28(3):504-521
界面的分子结构决定界面的性质.为了以优化界面的结构来改进材料的性质,原位实时地研究界面的分子结构是很重要的.近年来和频振动光谱已发展成为一个很有效及独特的手段来研究隐藏界面的分子结构,例如液/液界面、固/液界面及固/固界面等.这篇综述讨论了和频振动光谱在研究高分子界面及生物界面等复杂界面的分子结构上的应用.具体说来,本文论述了高分子表面在水里的分子结构变化,高分子及模型粘合促进剂硅烷在界面相互作用的分子机理和隐藏的高分子/高分子及高分子/金属界面的结构.另外,此文还将介绍不同二级结构的多肽及几个有代表性的蛋白分子在界面的结构.界面在诸如化学、生物、物理、材料科学及工程和纳米技术等许多领域都很重要.发展一个独特的能原位研究隐藏界面的分子结构的技术会有力地促进这些领域的研究及跨学科研究的发展.  相似文献   

8.
Polyimides are widely used as chip passivation layers and organic substrates in microelectronic packaging. Plasma treatment has been used to enhance the interfacial properties of polyimides, but its molecularmechanism is not clear. In this research, the effects of polyimide surface plasma treatment on the molecular structures at corresponding polyimide/air and buried polyimide/epoxy interfaces were investigated in situ using sum frequency generation (SFG) vibrational spectroscopy. SFG results show that the polyimide backbone molecular structure was different at polyimide/air and polyimide/epoxy interfaces before and after plasma treatment. The different molecular structures at each interface indicate that structural reordering of the polyimide backbone occurred as a result of plasma treatment and contact with the epoxy adhesive. Furthermore, quantitative orientation analysis indicated that plasma treatment of polyimide surfaces altered the twist angle of the polyimide backbone at corresponding buried polyimide/epoxy interfaces. These SFG results indicate that plasma treatment of polymer surfaces can alter the molecular structure at corresponding polymer/air and buried polymer interfaces.  相似文献   

9.
Structural changes of fibrinogen after adsorption to polystyrene (PS) were examined at the PS/protein solution interface in situ using sum frequency generation (SFG) vibrational spectroscopy and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). Different behaviors of hydrophobic side chains and secondary structures of adsorbed fibrinogen molecules have been observed. Our results indicate that upon adsorption, the hydrophobic PS surface induces fast structural changes of fibrinogen molecules by aligning some hydrophobic side chains in fibrinogen so that they face to the surface. Such structural changes of fibrinogen hydrophobic side chains are local changes and do not immediately induce significant changes of the protein secondary structures. Our research also shows that the interactions between adsorbed fibrinogen and the PS surface can induce significant changes of protein secondary structures or global conformations which occur on a much longer time scale.  相似文献   

10.
Characterization of real-time and ultrafast motions of the complex molecules at surface and interface is critical to understand how interfacial molecules function. It requires to develop surface-sensitive, fast-identification, and time-resolved techniques. In this study, we employ several key technical procedures and successfully develop a highly sensitive femtosecond time-resolved sum frequency generation vibrational spectroscopy (SFG-VS) system. This system is able to measure the spectra with two polarization combinations (ssp and ppp, or psp and ssp) simultaneously. It takes less than several seconds to collect one spectrum. To the best of our knowledge, it is the fastest speed of collecting SFG spectra reported by now. Using the time-resolved measurement, ultrafast vibrational dynamics of the N-H mode of α-helical peptide at water interface is determined. It is found that the membrane environment does not affect the N-H vibrational relaxation dynamics. It is expected that the time-resolved SFG system will play a vital role in the deep understanding of the dynamics and interaction of the complex molecules at surface and interface. Our method may also provide an important technical proposal for the people who plan to develop time-resolved SFG systems with simultaneous measurement of multiple polarization combinations.  相似文献   

11.
Conformational changes of fibrinogen after adsorption   总被引:2,自引:0,他引:2  
The adsorption behavior of fibrinogen to two biomedical polyurethanes and a perfluorinated polymer has been investigated. Changes in the secondary structure of adsorbed fibrinogen were monitored using attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and sum frequency generation vibrational spectroscopy (SFG). SFG measurements were performed in the amide I range as well as in the C-H/N-H stretching range. Amide I signals from SFG demonstrate that fibrinogen has post-adsorption conformational changes that are dependent upon the polymer surface properties. For example, strong attenuation of the amide I and N-H stretching signals with increasing residence time was observed for fibrinogen adsorbed to poly(ether urethane) but not for the other two polymers. This change is not readily observed by ATR-FTIR. Differences in the observed spectral changes for fibrinogen adsorbed to each polymer are explained by different initial binding mechanisms and post-adsorption conformational changes.  相似文献   

12.
Quantifying the ordering of adsorbed proteins in situ   总被引:1,自引:0,他引:1  
We have investigated the orientation and conformation of protein molecules at the polystyrene (PS)/protein solution interface using sum frequency generation (SFG) vibrational spectroscopy, supplemented by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). In this research, we studied fibrinogen as a model protein. SFG studies indicate that fibrinogen adopts a bent structure after adsorbing to the PS surface. A broad orientation distribution of fibrinogen coiled-coils at the interface has been quantified by combining SFG and ATR-FTIR measurements. Error analysis for such a deduced distribution was carried out. This research demonstrates that quantitative structural information such as orientational and conformational ordering of proteins at interfaces can be studied using SFG supplemented by other spectroscopic techniques.  相似文献   

13.
在B3LYP/6-31+G**水平下的溶剂中优化得到4个残基长和5个残基长的α-螺旋. 计算得到的骨架构象与蛋白质晶体结构的统计结果符合得很好. 类似于一般的较长α-螺旋, 观察到了C-端的散开. 对很短的聚丙氨酸肽链, 从焓上看310-螺旋明显比α-螺旋稳定, 然而熵效应不利于310-螺旋结构. 螺旋N2(N-端第二个残基)位上天冬氨酸侧链的加盖(Capping)效应明显使α-螺旋相对310-螺旋更加稳定. 因而, 在同样长度下α-螺旋比310-螺旋多的统计结果能够被理解. 另外, 最短的α-螺旋的C-端倾向于以β-转角结构结束.  相似文献   

14.
The first stage of protein self-organization—the formation of a fluctuating secondary structure in the unfolded protein chain—is considered. The stereochemical theory is presented enabling one to calculate helix-coil and β-structure-coil equilibrium constants. It is shown that the most probable localization of fluctuating α- and β-structure in the unfolded protein chain corresponds to the native localization of these structures. The formation of large α- and β-structural blocks is observed, each of them including several native α-helices or β-strands.  相似文献   

15.
The molecular structures of the interfaces between a solid poly(4‐vinyl pyridine) (P4VP) surface and poly(acrylic acid) (PAA) as well as hydrochloric acid (HCl) solutions were probed using sum frequency generation (SFG) vibrational spectroscopy in situ in real time. Spectroscopic results clearly reveal that the PAA molecules are adsorbed onto the P4VP surface via hydrogen bonding at the P4VP/PAA solution interface while the P4VP surface is protonated at the P4VP/HCl solution interface. Consequently, the water molecules near the interfaces are strongly perturbed by these two interactions, exhibiting different orderings at the two interfaces. This work clearly demonstrates the power of studying the interfacial molecular‐level structures via nonlinear vibrational spectroscopy when molecular adsorption happens at the solid–liquid interface and paves a way for our future study on tracing the adsorption dynamics of polymer chains onto solid surfaces. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 848–852  相似文献   

16.
Block copolypeptides with their inherent nanometer length scale of phase separation, provide means of manipulating the type (α-helices, β-strands) and persistence of peptide secondary structures. Two such examples are employed based on the α-helical poly(γ-benzyl-l-glutamate) (PBLG) polypeptide as one block and poly(l-leucine) (α-helical) or poly(O-benzyl-l-tyrosine) (POBT) (β-strands) as the second block. Although both secondary structures are present in the copolypeptides the effect of nano-scale confinement is to induce folding in the POBT β-sheets and to maintain the defected α-helices of PBLG and PLEU with a limited lateral coherence.  相似文献   

17.
A perturbation theory approach was developed for predicting the vibrational and electronic second-order nonlinear optical (NLO) polarizabilities of materials and macromolecules comprised of many coupled chromophores, with an emphasis on common protein secondary structural motifs. The polarization-dependent NLO properties of electronic and vibrational transitions in assemblies of amide chromophores comprising the polypeptide backbones of proteins were found to be accurately recovered in quantum chemical calculations by treating the coupling between adjacent oscillators perturbatively. A novel diagrammatic approach was developed to provide an intuitive visual means of interpreting the results of the perturbation theory calculations. Using this approach, the chiral and achiral polarization-dependent electronic SHG, isotropic SFG, and vibrational SFG nonlinear optical activities of protein structures were predicted and interpreted within the context of simple orientational models.  相似文献   

18.
Molecular dynamics simulations are performed to explore important conformations of cyclosporin A, an immunosuppressive cyclic undecapeptide drug, in different media including gas-phase, chloroform, and acetonitrile. Density functional theory calculations are used to refine the low-lying conformers and to predict their infrared and vibrational circular dichroism spectra. Vibrational spectral signatures in the important amide II, I, and A regions are identified for typical peptide secondary structures including β-turn (type II' or I), antiparallel β-sheet (flat or twisted), inverse γ-turn, N-methylated peptide bond, and side chain H-bond. New insights into the spectral signatures of secondary structures especially with N-methylation and side chain hydrogen bond are provided, which can be very useful for further peptide conformation analysis in general.  相似文献   

19.
Sum frequency generation (SFG) vibrational spectroscopy was used to study the structure of water at cross-linked PEO film interfaces in the presence of human serum albumin (HSA) protein. Although PEO is charge neutral, the PEO film/water interface exhibited an SFG signal of water similar to that of a highly charged water/silica interface, signifying the presence of ordered water. Ordered water molecules were observed not only at the water/PEO interface, but also within the PEO film. It indicates that the PEO and water form an ordered hydrogen-bonded network extending from the bulk PEO film into liquid water, which can provide an energy barrier for protein adsorption. Upon exposure to the protein solution, the SFG spectra of water at the water/PEO interface remained nearly unperturbed. For comparison, the SFG spectra of water/silica and water/polystyrene interfaces were also studied with and without HSA in the solution. The SFG spectra of the interfacial water were correlated with the amount of protein adsorbed on the surfaces using fluorescence microscopy, which showed that the amount of protein adsorbed on the PEO film was about 10 times less than that on a polystyrene film and 3 times less than that on silica.  相似文献   

20.
One of the important secondary structures in proteins is the β-strand. However, due to its complexity, it is less characterized than helical structures. Using the 1641 representative three-dimensional protein structure data from the Protein Data Bank, we characterized β-strand structures based on strand length and amino acid composition, focusing on differences between parallel and antiparallel β-strands. Antiparallel strands were more frequent and slightly longer than parallel strands. Overall, the majority of β-sheets were antiparallel sheets; however, mixed sheets were reasonably abundant, and parallel sheets were relatively rare. Notably, the nonpolar, aliphatic hydrocarbon amino acids, valine, isoleucine, and leucine were observed at a high frequency in both strands but were more abundant in parallel than in antiparallel strands. The relative amino acid occurrence in β-sheets, especially in parallel strands, was highly correlated with amino acid hydrophobicity. This correlation was not observed in α-helices and 3(10)-helices. In addition, we examined the frequency of 400 amino acid doublets and 8000 amino acid triplets in β-strands based on availability, a measurement of the relative counts of the doublets and triplets. We identified some triplets that were specifically found in either parallel or antiparallel strands. We further identified "zero-count triplets" which did not occur in either parallel or antiparallel strands, despite the fact that they were probabilistically supposed to occur several times. Taken together, the present study revealed essential features of β-strand structures and the differences between parallel and antiparallel β-strands, which can potentially be applied to the secondary structure prediction and the functional design of protein sequences in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号