首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, the experimental and theoretical vibrational spectra of P-Iodobenzene sulfonyl chloride (P-IBSC) were studied. P-IBSC and its derivatives present in many biologically active compounds. Because of their spectroscopic properties and chemical significance in particular, sulfonyl chloride and its derivatives have been studied extensively by spectroscopic (FTIR and FT-Raman spectra) and theoretical methods. The infrared spectra of these compounds were recorded in condensed states, while the Raman spectra were measured without polarization using both parallel and perpendicular polarizations of scattered light. The molecular geometry, highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO), first order hyperpolarizability and thermodynamic properties of P-IBSC have been computed with the help of density functional theory (B3LYP) and ab initio (HF) methods with the LanL2DZ basis set. The HOMO and LUMO energy gap explains the charge transfer interactions taking place within the molecule. NBO study explains charge delocalization of the molecule. The contributions of the different modes to each wave number were determined using potential energy distributions (PEDs). The experimental and calculated results were consistent with each other.  相似文献   

2.
Theoretical calculations were carried out on some neutral nest-shaped heterothiometallic cluster compounds [MOS3Py5Cu3X] (M = Mo, W; X = F, Cl, Br, I) with the high first static hyperpolarizabilities β values. The geometries of these cluster compounds were optimized by the restricted DFT method at B3LYP level with LanL2DZ base set without any constrains. In order to understand the relationship between the first static hyperpolarizabilities and the compositions of these clusters, the frontier orbital compositions and energy gaps between the HOMO and LUMO orbitals were calculated and analysed. In these clusters the HOMO orbitals are mainly composed of halogen atoms and the first static hyperpolarizability increases from F to I atom. The LUMO orbitals of clusters [MoOS3Py5Cu3X] are comprised of Mo, O and S atoms while the LUMO orbitals of clusters [WOS3Py5Cu3X] composed of W atom and pyridine ring. The energy gaps between the HOMO and LUMO orbitals of the clusters [MoOS3Py5Cu3X] are smaller than those of the clusters [WOS3Py5Cu3X]. As a result the first static hyperpolarizability values of the clusters [MoOS3Py5Cu3X] are higher than those of the clusters [WOS3Py5Cu3X].  相似文献   

3.
The first hyperpolarizability and electronic excitation spectrum of sesquifulvalene and a sesquifulvalene ruthenium complex have been computed and analyzed with use of time-dependent density-functional theory. A new orbital decomposition scheme is introduced that allows the computed first hyperpolarizability to be related to the electronic structure of complex molecules. The analysis shows that the first hyperpolarizability of sesquifulvalene is not associated with the first intense absorption, with HOMO-1 --> LUMO+1 character, but is dominated by the lowest energy transition, with HOMO --> LUMO character, despite its very low intensity. In the ruthenium complex, the analysis reveals that the strong enhancement of the nonlinear optical response compared to free sesquifulvalene should not be attributed to the effect of complexation on the hyperpolarizability of sesquifulvalene. The strong hyperpolarizability originates from MLCT transitions from ruthenium d-orbitals to an empty orbital located at the seven ring of sesquifulvalene, transitions that have no analogue in free sequifulvalene.  相似文献   

4.
Lysergol, elymoclavine (Δ9,10 and Δ8,9 regioisomers), and dihydrolysergol are important members of ergolines. The present work reports their comparative study in gas and solvent phase (water) that has been performed both experimentally and theoretically. Theortical calculations have been carried within the density functional theory formalism to analyze the structural and electronic properties of these molecules with B3LYP hybrid exchange–correlational fuctional in conjunction with 6‐311++G (d,p) basis set. Hessian calculations are performed at B3LYP/6‐31G (d,p) level of theory in gas phase as well as other solvent phases. Solvent phase calculations are performed using Onsager reaction field model as implemented in Gaussian 03. A good agreement has been found between experimental and theoretical infrared and nuclear magnetic resonance (NMR) spectra. The calculated NMR data has been analyzed statistically. Stability of these regioisomers has been analyzed in terms of the energy gap between highest occupied molecular orbital and lowest unoccupied molecular orbital (HOMO–LUMO gap). Calculations for lysergol and elymoclavine in water as solvent were carried to examine the effect of solvent on the HOMO–LUMO levels and energy of these molecules. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
Au的乙炔配合物非线性光学性质的量子化学计算   总被引:1,自引:0,他引:1  
曾薇  丁涪江  赵可清  ZHAO Ke-Qing 《化学学报》2008,66(17):1935-1942
对过渡金属Au的有机配合物Ph3PAuC≡CR (R=C6H4OCH3, Ph, C6H4NO2和PyNO2)的极化率和一阶、二阶超极化率进行了量子化学计算. 构型在B3LYP/CEP-121G水平优化. 用有效模型势方法和二阶多体微扰方法分别考虑了相对论效应和电子相关效应. 对基组进行了慎重的选择, 以ECP-HYPOL基组为对照标准, 在LFK基组基础上简化得到一个较小的基组LFK2. 计算结果与实测结果趋势一致.  相似文献   

6.
石玉芳  白杨  孙金鱼  李军  赵明根 《应用化学》2019,36(9):1035-1043
合成了3个新型同分异构芘基查尔酮:1-(芘-1-基)-3-(吡啶-2-基)-2-丙烯-1-酮(3a)、1-(芘-1-基)-3-(吡啶-3-基)-2-丙烯-1-酮(3b)和1-(芘-1-基)-3-(吡啶-4-基)-2-丙烯-1-酮(3c)。 通过核磁共振波谱仪(NMR)、傅里叶变换红外光谱仪(FTIR)和液-质联用仪(LC-MS)等技术手段表征3个化合物的结构、热稳定性和线性光学性质和三阶非线性光学吸收性能。 结果表明,在532 nm和180 fs条件下,化合物3a-3c均表现出超快三阶非线性光学响应,化合物3c的非线性吸收系数分别是化合物3b和3a的1.14和2.67倍。 运用密度泛函理论方法计算了化合物3a-3c的非线性光学性质及其电子性质,结果表明,化合物3c分子具有最大的静态第一超极化率(β0)(2830.9 a.u.),并具有最小的最高占据分子轨道(HOMO)-最低空分子轨道(LUMO)之间的能隙(3.11 eV)和最小的跃迁能(ΔE)(2.67 eV),这与N原子在吡啶环上的位置有关;分子内部均存在电荷转移现象。 3个化合物的紫外-可见光谱在450 nm以上无吸收,有良好的热稳定性,在激光防护方面有应用前景。  相似文献   

7.
Using density functional theory calculation based on the B3LYP method,we have studied the interactions of H2 molecules with alkali-metal organic complexes C6H6-nLin(n = 1~3),C6H5Na and C6H5K.A significant part of the electronic charge of M s orbital(Li 2s,Na 3s,K 4s) is donated to phenyl and is accommodated by H2 bonding orbital.For all the complexes considered,each bonded alkali-metal atom can adsorb up to five H2 in molecular form with the mean binding energy of 0.59,0.55 and 0.56 eV/H2 molecule for C6H6-nLin(n = 1~3),C6H5Na and C6H5K,respectively.The kinetic stability of these hydrogen-covered organometallic complexes is discussed in terms of energy gap between HOMO and LUMO.It is remarkable that these alkali-metal organic complexes can store up to 23.80 wt% hydrogen.Therefore,the complexes studied may be used as hydrogen storage materials.  相似文献   

8.
Optimized geometries and electronic structures of hydrogenated silicon nanoclusters, which include the Td and Ih symmetries, have been generated by using the semiempirical AM1 and PM3 methods, the density functional theory (DFT) B3LYP method with the 6-31G(d) and LANL2DZ basis sets from the Gaussian 03 package, and the local density functional approximation (LDA), which is implemented in the SIESTA package. The calculated diameters for these Td symmetric hydrogenated silicon nanoclusters are in the range from 6.61 A (Si5H12) to 23.24 A (Si281H172). For the Ih symmetry, we calculated Si20H20 and Si100H60 nanoclusters only. Theoretically, the energy gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) is size dependent. The calculated energy gap decreases (Si5H12: 7.65 eV to Si281H172: 3.06 eV) while the diameter of silicon nanocluster increases. By comparing different calculated results, we concluded that the calculated energy gap by B3LYP/6-31G(d)//LDA/SIESTA is close to that from experiment and that the LDA/SIESTA result underestimates the experimental value. On the contrary, the AM1 and PM3 results overestimate the experimental results. For investigation of the optical properties of Si nanoclusters as a function of surface passivation, we carried out a B3LYP/6-31G(d)//LDA/SIESTA calculation of the Si35 and Si47 core clusters with full alkyl-, OH-, NH2-, CH2NH2-, OCH3-, SH-, C3H6SH-, and CN- passivations. The calculated optical properties of alkyl passivated Si35 nanoclusters (Si35(CH3)36, Si35(C2H5)36, and Si35(C3H7)36) are close to one another and are higher than those of oxide, nitride, and sulfide passivated Si 35 clusters. In conclusion, the alkyl passivant affects weakly the calculated optical gaps, and the electron-withdrawing passivants generate a red-shift in the energy gap of silicon nanoclusters. A size-dependent effect is also observed for these passivated Si nanoclusters.  相似文献   

9.
Both C‐H bonding and antibonding (σCH and σ*CH) of a methyl group would contribute to the highest occupied or lowest unoccupied molecular orbitals (HOMO or LUMO) in methylated derivatives of Ir(ppz)2 3 iq (ppz = 1‐phenylpyrazole and 3iq = isoquinoline‐3‐carboxylate). This is found by analysis of HOMO (or LUMO) formed by linear combination of bond orbitals using the natural bond orbital (NBO) method. The elevated level of HOMO (or LUMO) uniformly found for each methylated derivative, indicating the σCH‐destabilization outweighs the σ*CH‐stabilization. To broaden the HOMO‐LUMO gap, methylation at a carbon having smaller contribution to HOMO and/or larger contribution to LUMO is suggested.  相似文献   

10.
Density functional theory calculations (B3LYP/6-311G*) are applied to devise a series of AlN-substituted C60 fullerenes, avoiding weak homonuclear Al–Al and N–N bonds. The substitutional structures, energy gaps between the highest occupied molecular orbital and the lowest unoccupied molecular orbital, ionization potentials, binding energies, as well as dipole moments have been systematically investigated. The band gap (HOMO–LUMO gap) is larger for all the AlN-substituted fullerenes than C60. The properties of heterofullerenes, especially, the HOMO–LUMO strongly depend on the number of AlN units. Natural charge analyses indicate that doping of fullerene with AlN units exerts electronic environment diversity to the cage. High charge transfer on the surfaces of our heterofullerenes provokes more studies on their possible application for hydrogen storage.  相似文献   

11.
The molecular geometry, vibrational frequencies, 1H and 13C NMR chemical shifts, UV-vis spectra, HOMO-LUMO analyses, molecular electrostatic potentials (MEPs), , thermodynamic properties and atomic charges of 3- and 4-Nitrobenzaldehyde oxime (C7H6N2O3) molecules have been investigated by using Hartree-Fock (HF) and density functional theory (DFT/B3LYP) methods with the 6-311++G(d, p) basis set. The calculated optimized geometric parameters (bond lengths and bond angles), the vibrational frequencies calculated and 13C and 1H NMR chemical shifts values for the mentioned compounds are in a very good agreement with the experimental data. Furthermore, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) have been simulated and the transition states, energy band gaps and molecular electrostatic potential (MEP) maps for each oxime compound have been determined. Additionally, we also report the infrared intensities and Raman activities for the compounds under study.  相似文献   

12.
The key parameters of conjugated polymers are lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) energy levels. Few approaches can simultaneously lower LUMO and HOMO energy levels of conjugated polymers to a large extent (>0.5 eV). Disclosed herein is a novel strategy to decrease both LUMO and HOMO energy levels of conjugated polymers by about 0.6 eV through replacement of a C C unit by a B←N unit. The replacement makes the resulting polymer transform from an electron donor into an electron acceptor, and is proven by fluorescence quenching experiments and the photovoltaic response. This work not only provides an effective approach to tune the LUMO/HOMO energy levels of conjugated polymers, but also uses organic boron chemistry as a new toolbox to develop conjugated polymers with high electron affinity for polymer optoelectronic devices.  相似文献   

13.
The key parameters of conjugated polymers are lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) energy levels. Few approaches can simultaneously lower LUMO and HOMO energy levels of conjugated polymers to a large extent (>0.5 eV). Disclosed herein is a novel strategy to decrease both LUMO and HOMO energy levels of conjugated polymers by about 0.6 eV through replacement of a C? C unit by a B←N unit. The replacement makes the resulting polymer transform from an electron donor into an electron acceptor, and is proven by fluorescence quenching experiments and the photovoltaic response. This work not only provides an effective approach to tune the LUMO/HOMO energy levels of conjugated polymers, but also uses organic boron chemistry as a new toolbox to develop conjugated polymers with high electron affinity for polymer optoelectronic devices.  相似文献   

14.
PODIPY and aza‐PODIPY have been successfully prepared by the treatment of dipyrromethene and azadipyrromethene with POCl3 in the presence of Et3N. The new PODIPY and aza‐PODIPY dyes are found to have photophysical properties. PODIPY and aza‐PODIPY are water‐soluble, and aza‐PODIPY is suited for labeling living Hep‐2 cells for imaging assays in the near‐infrared region. Molecular orbital calculations show that the increase in the HOMO–LUMO band gap for the lowest energy absorption bands is observed in the new phosphorus‐containing aza‐PODIPY, and the HOMO and LUMO energies of aza‐PODIPY are found to be higher than those of aza‐BODIPY.  相似文献   

15.
We report the results of a DFT study of the electronic properties, intended as highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies, of periodic models of H‐passivated armchair graphene nanoribbons (a‐GNRs) as that synthetized by bottom‐up technique, functionalized by vicinal dialdehydic groups. This material can be obtained by border oxidation in mild and easy to control conditions with 1Δg O2 as we reported in our previous paper (Ghigo et al., ChemPhysChem 2015, 16, 3030). The calculations show that the two models of border oxidized a‐GNRs (model A, 0.98 nm and model B, 1.35 nm wide) present LUMO and HOMO energies lowered by an extend roughly linearly dependent on the amount of oxygen chemically bound. The frontier orbital energy variations dependence on the % wt of oxygen bound are, for model A: ?0.12 eV for the LUMO and ?0.05 eV for the HOMO; for model B: ?0.15 eV (HOMO) and ?0.06 eV (LUMO). © 2016 Wiley Periodicals, Inc.  相似文献   

16.
With density functional theory(DFT) method, the optimization of molecular configurations and the calculation of frontier molecular orbitals were achieved for triphenylamine(TPA)-based dye-sensitized solar cell materials at the B3LYP/6-31G(d, p) level. Time-dependent density functional theory(TD-DFT) was applied to calculating the probability of the transition from the ground state to the excited state. And UV-Vis absorption spectra were derived with Franck-Condon approximation. The conjugation length, substitution groups and spatial effects show a slight influence on the dihedral angle of the TPA group. The increase of conjugation length may cause a smaller energy gap as well as a higher highest occupied molecular orbital(HOMO) and a lower lowest unoccupied molecular orbital (LUMO). The introduction of methoxyl group and TPA group could lower the energy gap while the HOMO and LUMO were elevated in energy.  相似文献   

17.
The ground- and excited-state structures of five Re(I) halide glyoxime complexes ReCl(CO)(3)(N(∧)N) (N(∧)N = glyoxime (DHG 1), dimethylglyoxime (DMG 2), cyclohexane dione glyoxime (CHDG 3), dibromoglyoxime (DBG 4), and dimethylformylgloxime (DMFG 5)) have been studied with density functional theory (DFT) and configuration interaction with single excitations (CIS) methods. Time-dependent density functional theory/polarized continuum model (TDDFT/PCM) was carried out to predict the absorption and emission spectra in different media. The effect of substituent and solvent has been researched. It is found that electron-donating groups increase the lowest unoccupied molecular orbital (LUMO) energy resulting in the increased highest occupied molecular orbital (HOMO)-LUMO energy gap. The change leads to their absorption spectra blue shifts in the order 1 > 2 > 3, which arises from the HOMO-1 → LUMO. Just the opposite, electron-withdrawing groups lead to the spectra red shifts (5 > 4 > 1) because of the decreased HOMO-LUMO energy gap. The reorganization energy (λ) calculations show that the relatively balanceable charges transfer abilities of 2 will result in the higher efficiency of organic light emitting devices (OLEDs). In addition, both the absorption and the emission spectra display red shifts in different extents with the decrease of solvent polarity.  相似文献   

18.
采用密度泛函理论(DFT)方法,在B3LYP/6-31G*的水平上对苯并二呋喃酮类染料及其芳环6,6’-,9,9’-,10,10’-,11,11’-,12,12’-,13,13’-取代衍生物进行理论计算,讨论了CH3、OCH3、Cl、NO2在不同位置取代对分子的几何结构、电子结构和能量的影响。同时采用含时的密度泛函理论(TD-DFT)方法在相同水平下计算其电子光谱。结果表明:母体被取代后能量降低,结构变稳定;苯并二呋喃酮类染料及其芳环取代物的最低单重激发态均主要源自HOMO-LOMO(π-π*)跃迁。  相似文献   

19.
Electron‐donating molecules play an important role in the development of organic solar cells. (Z )‐2‐(2‐Phenylhydrazinylidene)acenaphthen‐1(2H )‐one (PDAK), C18H12N2O, was synthesized by a Schiff base reaction. The crystal structure shows that the molecules are planar and are linked together forming `face‐to‐face' assemblies held together by intermolecular C—H…O, π–π and C—H…π interactions. PDAK exhibits a broadband UV–Vis absorption (200–648 nm) and a low HOMO–LUMO energy gap (1.91 eV; HOMO is the highest occupied molecular orbital and LUMO is the lowest unoccupied molecular orbital), while fluorescence quenching experiments provide evidence for electron transfer from the excited state of PDAK to C60. This suggests that the title molecule may be a suitable donor for use in organic solar cells.  相似文献   

20.
This work investigated the synthesis of biphenyl‐3,3′,4,4′‐tetracarboxylic dianhydride and benzophenone‐3,3′,4,4′‐tetracarboxylic dianhydride derivatives ( 3a – e and 6a – e ) with different substituted phenols via Friedel‐Crafts acylation reaction in the presence of dilute sulfuric acid. Dianhydride derivatives with 3‐N,N′‐dimethylamino phenol ( 3d and 6d ) and resorcinol ( 3e and 6e ) have been found to be highly fluorescent. The structures of all newly synthesized compounds were confirmed by the chromatographic, spectral and elemental data. Electrochemical study was done to determine to band gap energy, LUMO and HOMO levels energy. Band gap and LUMO energy levels were found to be lowest in xanthene derivatives substituted with 3‐N,N′‐dimethylamino group having value 2.24 and 4.85 eV respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号