首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The folding of many small proteins is kinetically a two-state process with one major free-energy barrier to overcome,which can be roughly regarded as the inverse process of unfolding.In this work,we first use a Gaussian network model to predict the folding nucleus corresponding to the major free-energy barrier of protein 2 GB1,and find that the folding nucleus is located in theβ-sheet domain.High-temperature molecular dynamics simulations are then used to investigate the unfolding process of 2 GB1.We draw free-energy surface from unfolding simulations,taking RMSD and contact number as reaction coordinates,which confirms that the folding of 2 GB1 is kinetically a two-state process.The comparison of the contact maps before and after the free energy barrier indicates that the transition from native to non-native structure of the protein is kinetically caused by the destruction of theβ-sheet domain,which manifests that the folding nucleus is indeed located in theβ-sheet domain.Moreover,the constrained MD simulation further confirms that the destruction of the secondary structures does not alter the topology of the protein retained by the folding nucleus.These results provide vital information for upcoming researchers to further understand protein folding in similar systems.  相似文献   

2.
韦靓  刘玉鑫 《中国物理快报》2005,22(9):2222-2225
By taking the BUU model, we simulate the superheavy element synthesis reaction. With the rotation effect being included in the BUU model, the effect of the non-centrality of the reaction ^48Ca+^238U→^286 112 is studied. It is shown that the promising impact parameter in the synthesis process can be released from zero to a value little smaller than the radius of the smaller nucleus involved in the reaction. Meanwhile, the compound nucleus may involve rich shape phases.  相似文献   

3.
Three time scales of a fissioning nucleus starting from the ground state to the scission point are defined and calculated by the Monte Carlo method. The result shows that the time of oscillating around the saddle point is longer than both the mean first passage time from the ground state to the saddle point and the time of descent from the saddle to scission points. Thus it is suggested that more neutrons could be emitted from a hot heavy fissioning nucleus during the period of the stretching and contracting of the deformation process.  相似文献   

4.
A nonlinear circuit can be designed by using inductor, resistor, capacitor and other electric devices, and the electromagnetic field energy can be released from the circuit in the oscillating state. The generation of spikes or bursting states in neurons could be energetically a costly process. Based on the Helmholtz's theorem, a Hamilton energy function is defined to detect the energy shift induced by transition of electric modes in a Hindmarsh–Rose neuron. It is found that the energy storage is dependent on the external forcing, and energy release is associated with the electric mode. As a result, the bursting state and chaotic state could be helpful to release the energy in the neuron quickly.  相似文献   

5.
We study radiative decays of T to light quark jets in nonrelativistic QCD by taking both the color singlet and color octet b^-b operators into consideration. The cut for quark jet energy and cut for the angle between two quark jets are introduced. The sensitivity to the soft and collinear singularities in the loop integrals are greatly reduced by these cuts. With the jet energy cut of about 1 GeV, and the jet angle cut of about 36°, the branching ratio for γ→ rq^- is found to be 8.2 × 10^-4 from color singlet contributions. The color octet contributions could be much larger than that of color singlet, depending on the estimate of the color octet matrix elements. This process may provide a new test for the color octet mechanism in nonrelativistic QCD.  相似文献   

6.
A model for cold-fusion reactions related to the synthesis of super-heavy nuclei in collisions of heavy projectile-nuclei with a 208Pb target nucleus is discussed.In the framework of this model,the production of the com-pound nucleus by two paths,the di-nuclear system path and the fusion path,are taken into account simultaneously.The formation of the compound nucleus in the framework of the di-nuclear system is related to the transfer of nucle-ons from the light nucleus to the heavy one.The fusion path is linked to the sequential evolution of the nuclear shape from the system of contacting nuclei to the compound nucleus.It is shown that the compound nucleus is mainly formed by the fusion path in cold-fusion reactions.The landscape of the potential energy related to the fusion path is discussed in detail.This landscape for very heavy nucleus-nucleus systems has an intermediate state,which is linked to the formation of both the compound nucleus and the quasi-fission fragments.The decay of the intermediate state is taken into account in the calculation of the compound nucleus production cross sections and the quasi-fission cross sections.The values of the cold-fusion cross sections obtained in the model agree well with the experimental data.  相似文献   

7.
The generalized liquid drop model (GLDM) is extended to the region around deformed shell closure ^270Hs by taking into account the excitation energy EI+ of the residual daughter nucleus and the centrifugal potential energy Vcen(r). The branching ratios of a decays from the ground state of a parent nucleus to the ground state 0^+ of its deformed daughter nucleus and to the first excited state 2^+ are calculated in the framework of the GLDM. The results support the proposal that a measurement of a spectroscopy is a feasible method to extract information on nuclear deformation of superheavy nuclei around the deformed nucleus ^270Hs.  相似文献   

8.
The dynamical process in the superheavy nucleus synthesis is studied on the basis of the two-dimensional Smoluchowski equation. Special attention is paid to the isotope dependence of the cross section for the superheavy nucleus formation by means of making a comparison among the reaction systems of ^54Re+204pb, ^56Re +206Pb, and ^58Fe+^208Pb. It is found by this comparison that the formation cross section is very sensitive to the conditional saddle-point height and the neutron separation energy of the compound nucleus. Reaction systems with lower height of conditional saddle-point and smaller neutron separation energy are more favourable for the synthesis of the superheavy nucleus.  相似文献   

9.
The discovered proton halo nucleus of ^23Al is investigated in the nonlinear relativistic mean-field(RMF) model with deformation using the NL075 force parameter,It is shown that there is an energy inversion between the (5/2)^ (202)and (1/2)^ (211)orbitals in the ^23Al nucleus,which may produce a large enhancement of the reaction cross section compared with the neighbouring nuclei.Meanwhile,the NL075 force parameter may be better than the other RMF parameters for the calculation of the large defromed nucleus ^23Al.  相似文献   

10.
We have derived a formula for the neutron radiative capture cross section in the framework of a statistical model approach to nuclear reactions. Based on this formula, new systematics are established between the (n, γ) reaction cross section and the energy level density of a compound nucleus or a relative neutron excess of an even-even target nucleus for neutron incident energy above the resonance region to MeV. Good agreement with experimental data suggests that this new systematical law is helpful to analyze the experimental data.  相似文献   

11.
研究了基于双核模型的粒子交换势能面.原子核的形变效应对于势能面的形状有较大的影响.在反应过程中,作为反应时间函数的动态形变的变化是显著的.通过求解主方程,对一些基于冷熔合机制的反应道的全熔合几率也进行了讨论. The Potential Energy Surface (PES) for particle exchange in Di nuclear system is studied in detail. It is found that the nuclear deformation effect can change the shape of PES significantly. The dynamical deformation as a function of the reaction time in the reaction process is investigated in a simple model and we found that its variation with time is dramatic. The fusion probabilities P-CN of some reaction channels based on the mechanism of cold fusion are also calculated.  相似文献   

12.
曾晓雄  周史薇  刘文彪 《中国物理 B》2012,21(9):90402-090402
The recent work of Nation et al., in which the Hawking radiation energy and entropy flow from a black hole is considered to be produced in a one-dimensional Landauer transport process, is extended to the case of a Reissner- Nordstrom black hole. The energy flow contains not only the contribution of the thermal flux but also that of the particle flux. It is found that the charge can also be transported via the one-dimensional quantum tunnel. Because of the existence of the electrostatic potential, the entropy production rate is shown to be smaller than that of the Schwarzschild black hole.  相似文献   

13.
Based on the light nucleus reaction model (Nucl. Sci. Eng. 133 (1999) 218), four aspects (neutron incident energy region, reaction channel analysis, the renewed level schemes and the optical model parameters) of n+ ^12 C reaction are improved to calculate total outgoing neutron double-dilferential cross sections with modified LUNF code below 30 MeV. The calculated results agree fairly well with the experimental data at En = 14.1 MeV and 18 MeV. The analysis shows that the pre-equilibrium mechanism, which is exactly considered the conservation of energy, momentum and parity, dominates the whole reaction process. The contribution of the neutron emission from 5He to total energy- angular spectra is also considered properly. This modified LUNF code will be a useful tool to set up the file of neutron double-differential crass sections below 30 Me V in the neutron evaluation nuclear data library.  相似文献   

14.
Quasi-classical trajectory(QCT) calculations are reported for the H+LiH(v = 0–2, j = 0)→Li+H_2 reaction on a new ground electronic state global potential energy surface(PES) of the LiH_2 system. Reaction probability and integral cross sections(ICSs) are calculated for collision energies in the range of 0 eV–0.5 eV. Reasonable agreement is found in the comparison between present results and previous available theoretical results. We carried out statistical analyses with all the trajectories and found two main distinct reaction mechanisms in the collision process, in which the stripping mechanism(i.e., without roaming process) is dominated over the collision energy range. The polarization dependent differential cross sections(PDDCSs) indicate that forward scattering dominates the reaction due to the dominated mechanism. Furthermore,the reactant vibration leads to a reduction of the reactivity because of the barrierless and attractive features of PES and mass combination of the system.  相似文献   

15.
With an oscillator basis, the nuclear Hamiltonian is defined in a no core model space. It consists of an effective nucleon nucleon interaction obtained with Brueckner theory from the Reid soft core interaction, a Coulomb potential, nucleon delta transition potentials, and delta delta interaction terms. By performing spherical Hartree Fock (SHF) calculations with the realistic baryon Hamiltonian, the ground state properties of 40Ca are studied. For an estimate of how the delta degree of freedom is excited, SHF calculations are performed with a radial constraint to compress the nucleus. The delta degree of freedom is gradually populated as the nucleus is compressed. The number of Δ’s is decreased by increasing model space. Large amount of the compressive energy is delivered to create massive Δ in the nucleus. There is a significant reduction in the static compression modulus for RSC static compressions which is reduced by including the Δ excitations. The static compression modulus is decreased significantly by en larging the nucleon model space. The results suggest that inclusion of the delta in the nuclear dynamics could head to a significant softening of the nuclear equation of state.  相似文献   

16.
Characteristic of energy input for laser forming sheet metal   总被引:3,自引:0,他引:3  
Laser forming is a process in which laser-induced thermal deformation is used to form sheet metal without a hard forming tool or external forces. The energy input of laser beam is the key factor for the temperature and stress distribution of sheet metal. The purpose of this work is to investigate the influence of energy input condition on heat input and deformation angle for two-dimension laser forming. Variations in heat input resulting from material deformation was calculated and discussed in this paper at first. Furthermore, in laser forming under the condition of constant laser energy input, the effects of energy input mode on deformation angle and temperature field were investigated.  相似文献   

17.
The macroscopic deformed potential energy for super-heavy elements Z=120 is determined within a generalized liquid drop model (GLDM). The shell correction is calculated with the Strutinsky method and the microscopic single particle energies are derived from the shell model in an axially deformed Woods-Saxon potential with the same quasi-molecular shape. The total potential energy of a nucleus is calculated by the macro-microscopic method as the summation of the liquid-drop energy and the Strutinsky shell correction. The theory is adopted to describe the deformed potential energies in a set of cold reactions. The neck in the quasi-molecular shape is responsible to the deep valley of the fusion barrier due to shell corrections. In the cold fusion path, the double-hump fusion barrier is predicted by the shell correction and complete fusion events may occur. The results show that some of projectile-target combinations in the entrance channel, such as ^50Ca ^252Fm→120 and 58Fe 244 pu→^302 120 , favour the fusion reaction, which can be considered as candidates for the synthesis of super heavy nuclei Z=120 and the former might be the best cold fusion reaction to produce the nucleus ^302 120among them.  相似文献   

18.
The macroscopic deformed potential energies for super-heavy elements Z = 110,112,114,116,118 arc determined within a generalized liquid drop model (GLDM). A quasi-molecular mechanism is introduced to describe the deformation of a nucleus in the GLDM and the shell model simultaneously. The macroscopic energy of a twocenter nuclear system in the GLDM includes the volume-, surface-, and Coulomb-energies, the proximity effect at each mass asymmetry, and accurate nuclear radius. The shell correction is calculated by the Strutinsky method and the microscopic single particle energies are derived from a shell model in an axially deformed Woods-Saxon potential with the quasi-molecular shape. The total potential energy of a nucleus can be calculated by the macro-microscopic method as the summation of the liquid-drop energy and the Strutinsky shell correction. The theory is applied to predict the fusion barriers of the cold reactions ^64Ni ^208 spb → ^272 110*, ^70Zn ^208pb → ^278 112*, ^76Ge ^208seb → ^284 114*,^82Se ^208pb → ^29 116*, ^86Kr ^208pb → ^294 118*. It is found that the neck in the quasi-molecular shape is responsible for the deep valley of the fusion barrier. In the cold fusion path, double-hump fusion barriers could be predicted by the shell corrections and complete fusion events may occur.  相似文献   

19.
A vast body of fusion data has been analyzed for different projectiles and target nuclei. It is indicated that the sub-barrier fusion depends on the fusion Q-value. In terms of a recently introduced fusion Q-value rule and an energy scaling reduction procedure, the experimental fusion excitation functions are reduced and compared with each other. It is found that the reduced fusion excitations of selected fusion systems show a similar trend. The fusion data for massive nuclei are in agreement with the Q-value rule. In the fusion process, the Q contribution should be considered. Within this approach, the sub-barrier fusion cross sections of most fusion systems can be predicted without involving any structure effects of colliding nuclei. Instances of disagreement are presented in a few fusion systems. The use of the energy scaling as a criterion of possible experimental data inconsistency is discussed. More precise experimental fusion data need to be measured.  相似文献   

20.
The properties of strangelets at zero temperature with a new quark model that includes both the confinement and one-gluonexchange interactions is studied in a fully self-consistent method.The charge and parameter dependence of the stability of strangelets are discussed.It is found that the one-gluon-exchange interaction lowers the energy of a strangelet,and consequently allows the strangelet to be absolutely stable.The stable strangelet radius in the present model is smaller in comparison with the absence of one-gluon-exchange interaction,and can thus be much less than that of a normal nucleus with the same baryon number,according to the strength of the confinement and one-gluon-exchange interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号