首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chirality induction of π-conjugated polyaniline derivatives was achieved by chiral complexation with chiral palladium(II) complexes. The crystal structure of the chiral conjugated complex with a model compound of the polyaniline, N,N-bis(4-dimethylaminophenyl)-1,4-benzoquinonediimine, revealed a chiral propeller twist conformation of the π-conjugated moiety.  相似文献   

2.
Diacetylene monomers with respective lengths of the oxyethylene chains were cyclopolymerized with a rhodium catalyst to produce novel poly(phenylacetylene)s bearing a different cavity size of the chiral crown ether in the repeating units ( 2a – c ). In the circular dichroism spectra of the resulting polymers, characteristic Cotton effects were observed in the range from 350 to 500 nm corresponding to the absorption of the conjugated polymer backbone, indicating that the polymers possessed a helical structure with an excess single screw sense induced by the covalently bonded binaphthyl units. The host–guest complexation of 2a – c with achiral guests produced a chiroptical change based on the fluctuation in the main chain conformation. The behavior of the complexation‐induced chiroptical change was essentially dictated by the cavity size of the binaphthocrown ether units. Additionally, a chirality‐responsive helicity change was observed in the case of the complexation of 2a – c with chiral guests, which also depended on the crown ether size. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1197–1206, 2010  相似文献   

3.
Flieger A  Przeszlakowski S 《Talanta》1985,32(12):1141-1144
The retention of palladium and platinum complexes with nitroso-R-salt on silica gel treated with Aliquat 336 has been investigated. The complexation of platinum with nitroso-R-salt (NRS) requires heating of H2PtCl6 with an excess of NRS at 100°. The affinity of the complexes for an Aliquat 336 stationary phase increases in the following order: PdCl42− ˜ Pt-NRS < PtCl62− Pd-NRS. The complexes of palladium and platinum can be separated by column chromatography on silica treated with Aliquat 336 and eluted with 0.25M perchloric acid (Pt) and 1M perchloric acid (Pd).  相似文献   

4.
The synthesis of a wide structural variety of enantiopure 1-phosphino-2-sulfenylferrocene ligands 1 possessing exclusively planar chirality is described. In the case of the readily available tert-butylsulfenyl derivatives very high enantioselectivities were obtained in the palladium-catalyzed allylic substitution of 1,3-diphenyl-2-propenyl acetate with dimethyl malonate (ee's up to 97%) and nitrogen nucleophiles (ee's up to 99.5%). Palladium complexes of these ferrocenes were characterized by NMR and X-ray diffraction, revealing the P,S-bidentate character of the ligands 1 and the formation of a single epimer on the stereogenic sulfur atom resulting from the complexation with palladium. A model justifying the observed asymmetric induction exerted by this novel family of chiral ferrocenes, supported by solution NMR studies on a palladium allylic complex, is discussed.  相似文献   

5.
Varieties of chiral, bridged bisimidazolium salts as well as the synthesis of palladium complexes of general formula with the corresponding chelating N-heterocyclic carbene ligands is reported. This is the first systematic study of chiral bis(imidazolin-2-ylidene)palladium(II) complexes bearing chiral groups on the endocyclic nitrogens. Structural proof of such a chiral palladium(II) complex is presented by way of an X-ray diffraction study of complex 3a.  相似文献   

6.
We have systematically investigated the structural features, electronic properties, thermally-induced structural phase transitions and absorption spectra depending on the solvent for ten Cu(II) complexes with 3,5-halogen-substituted Schiff base ligands. Structural characterization of two new complexes, bis(N-R-1-phenylethyl- and N-R,S-2-butyl-5-bromosalicydenaminato-κ2N,O)copper(II), reveals that they afford a compressed tetrahedral trans-[CuN2O2] coordination geometry with trans-N–Cu–N = 159.4(2)° and trans-O–Cu–O = 151.7(3)° for the 1-phenylethyl complex and trans-N–Cu–N = 157.9(3)° and trans-O–Cu–O = 151.0(3)° for the 2-butyl one. All the complexes exhibit a structural phase transition by heating in the solid state regardless of their structures at room temperature. The absorption spectra of a series of ten complexes exhibit a slight shift of the d–d band at 16 000–20 000 cm−1 and remarkable shift of the π–π* band at 24 000–28 000 cm−1, which suggests that the dipole moment of the solvents presumably affects the conformation of the π-conjugated moieties of the ligands rather than the coordination environment. We have also attempted ‘photochromic solute-induced solvatochromism’ by a system of bis(N-R-1-phenylethyl-3,5-dichlorosalicydenaminato-κ2N,O)copper(II) and photochromic 4-hydroxyazobenzene in chloroform solution. We successfully observed a change of the d–d and π–π* bands of the complex in the absorption spectra caused by cistrans photoisomerization of 4-hydroxyazobenzene.  相似文献   

7.
Diverse chiral rhodium and palladium complexes ligated with phosphine-functionalized N-heterocyclic carbene ligands based on 1,1′-binaphthyl backbone have been synthesized. The structures of these phosphine-NHC rhodium and palladium complexes have been confirmed by X-ray diffraction analysis. The different sizes of the N-substituents from the NHC-P rhodium complexes had an inverse relationship with their ability of chiral induction, which was accounted by the Rh-catalyzed asymmetric hydrosilylation of acetophenone to afford corresponding chiral alcohol with up to 72% ee. The NHC-P palladium complexes connected with different kinds of coordination anions were also applied in the Suzuki and Heck reactions. The acetate-coordinated NHC-P palladium complex exhibited better catalytic activity to give the products in excellent yield under mild conditions.  相似文献   

8.
In a quest for the main‐chain chiral and highly stable blue‐light‐emitting π‐conjugated polymers, a novel series of soluble conjugated random and alternating copolymers (PF‐BN) derived from fluorene and axially chiral 1,1′‐binaphthol (BINOL) were successfully synthesized by Suzuki coupling polymerization. The polymer structures, optical properties, and their electrochemical properties were investigated by 1H NMR, TGA/DSC, UV‐Vis absorption, photoluminescence, cyclic voltammetry, circular dichroism spectroscopy, and DFT calculations. The blue‐light‐emitting BINOL‐containing copolymers with proper content of BINOL show highly efficient photoluminescence and ultra highly stable light‐emission with almost unchanged fluorescent spectra after annealing at 200 °C in air for 10 h. The joint experimental and theoretical study of the main‐chain chirality reveals that (1) the chirality of BINOL can be transferred to the polymer backbone, (2) the effective conjugation length is about one BINOL and three fluorenes, (3) the main active chiral block in the copolymers is probably composed by one BINOL with the other two or three fluorenes, and (4) the dihedral angle in the PF‐BN copolymers should be larger than 105°. The incorporation of BINOL into the polyfluorene backbone is an effective way to produce highly efficient and stable blue‐light‐emitting main‐chain chiral conjugated polymer with interesting optoelectronic properties. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3868–3879, 2010  相似文献   

9.
The effect of chiral metal complexes ([Co(en)(3)]I(3)·H(2)O, cis-[CoBr(NH(3))(en)(2)]Br(2), K[Co(edta)]·2H(2)O and [Ru(phen)(3)](PF(6))(2)) on the polymer-bound J-aggregates in aqueous mixtures of pesudoisocyanine (PIC) iodine and poly(acrylic acid, sodium)(PAAS) have been studied by UV-vis absorption, circular dichroism (CD) and fluorescence spectra. At low concentration, the PIC monomers could self-assemble to form supermolecules by binding to each of the COO(-) groups on the polymer chains through electrostatic interactions. After the addition of chiral metal complexes to the formed PIC-PAAS J-aggregates, we found that only the chiral multiple π-conjugated phenanthroline metal complexes could transfer their metal-centered chiral information to the formed J-aggregates. The chiral J-aggregates showed a characteristic induced circular dichroism (ICD) in the visible region of J-band chromophore, and the ICD signals depend on the absolute configuration, concentration of the chiral multiple π-conjugated metal complexes, as well as temperature. More interestingly, the supramolecular chirality of the polymer supported PIC J-aggregates could be memorized even after the addition of an excess opposite chiral complex enantiomers. This is in sharp contrast to the behavior in the high concentrated NaCl induced PIC-J aggregates, in which the optical rotation of a mixture of two enantiomers varies linearly with their ratio.  相似文献   

10.
Liquid crystalline Ni(II) and Cu(II) complexes of tetradentate ligands, enaminoketones and 3-oxa; 3-thia- and 3-selena-butyramides were synthesized and examined. The compounds show very low C1 symmetry resulting from the chiral donor atoms — oxygen, sulphur and selenium — incorporated in the butyric amide moiety. This chirality can be observed in NMR studies. The complexes exhibit enantiotropic as well as monotropic calamitic SmA and N phases.  相似文献   

11.
The preparation, assembly and dynamic properties of photoswitchable bisphosphine ligands based on the stiff-stilbene scaffold are reported. Directional bonding and coordination-induced assembly allow complexation of these ligands with palladium(II), resulting in the formation of discrete metallo-supramolecular entities. While the Z isomer forms a simple bidentate metallo-macrocycle, an intricate double helicate figure-of-eight dimer is observed with the E ligand. Topologically 3D complexes can thus be obtained from 2D ligands. Upon irradiation with UV light, isomerization of the ligands allows control of the architecture of the formed complexes, resulting in a light-triggered modulation of the supramolecular topology. Furthermore, a mechanistic investigation unveiled the dynamic nature of the helicate chirality, where a transmission of motion from the palladium centers yields an „eight-to-eight“ inversion.  相似文献   

12.
A kinetically inert, reversible coordination polymer (3) was obtained through complexation of dicyclohexylphosphine telechelic poly(tetrahydrofuran) with palladium(II) dichloride. This coordination polymer is unreactive towards palladium(II) dichloride bis(1-diphenylphosphino)dodecane (4), because ligand dissociation in the coordination polymer is slow. However, upon ultrasonication of solutions of 3 in toluene in the presence of 4, formation of palladium(II) heterocomplexes was observed with (31)P NMR spectroscopy. Heterocomplex formation, the consumption of 4, and changes in molecular weight were used to quantify the scission process. In the presence of 60 equivalents of the alkyldiphenylphosphine stopper complex, the reduction in molecular weight was strongly enhanced; over a period of eight hours the weight-averaged molecular weight was reduced from 1.1x10(5) to 2.3x10(4) g mol(-1) while 47 % of the palladium(II) complexes in the coordination polymer had been converted into heterocomplexes. These results show that the system of 3 in combination with scavenger 4 is a suitable system to study the efficiency of ultrasound-induced chain scission of coordination polymers.  相似文献   

13.
There has been a surge of interest concerning the synthesis, optical and electronic properties of π-conjugated polymers that contain transition metal complexes. The integration of transition metal chromophores that feature metal to ligand charge transfer (MLCT) excited states into a π-conjugated polymer permits easy variation of the material’s optical and electronic properties. In this review, we survey a number of recent photophysical studies that examine π-conjugated oligomer or polymer/transition metal complex hybrids. The effects of the types of π-conjugated backbone, oligomer and polymer structure, the conjugation length and coordination to a variety of metal chromophores on the photophysics of the organic-metal hybrids are discussed. The degree of interaction between the polymer (or oligomer) and metal complex based excited states dramatically modulates the observed photophysics.  相似文献   

14.
A new family of chelation-induced axially chiral palladium complexes by using biphenyl ligands 2 with four identical chiral oxazoline groups at four ortho positions has been developed. Although there is no axial chirality in ligands 2 due to the molecular symmetry, when they chelated with one or two palladium ions, the axial chirality could be induced by destroying the molecular symmetry. Significantly, only one diastereomeric metal complex with (S)-axial configuration was produced during the chelation-induced process. The chelation-induced axially chiral catalytic system, 2c-Pd(CF3COO)2 (1:1 molar ratio), showed excellent catalytic activities and enantioselectivities in the Wacker-type cyclization of allylphenols with up to 99% ee.  相似文献   

15.
Bis(allylic)palladium complexes can be induced to undergo reductive elimination by replacement of phosphine ligands in the system with π-acidic ligands. The product 1,5-diencs, formed in high yield, are predominantly the ‘head-to-head’ coupled isomers. The bis(allylic)palladium intermediatesmay be formed by addition of an allylic Grignard or trialkyl(allylic)tin reagent to an (η3-allyl)palladiuin chloride complex, or by 1,3-diene condensation. The latter process leads to cydodimerization, ‘unusual’ for palladium catalysed reactions.  相似文献   

16.
Summary: The synthesis of a novel series of multi‐nuclear macroligated pyridylimine based palladium(II) complexes conjugated to a synthetic star polymer core has been well‐described. Star shaped polystyrene with a finite number of arms were prepared by atom transfer radical polymerization (ATRP) and the chain ends were chemically modified in order to introduce the desired end functionality. Utilizing this polymer as organic supports for pyridylimine‐based ligands, palladium(II) complexes were synthesized. On activating with methylaluminoxane (MAO), this complex showed substantially high activity towards ethylene oligomerization, producing C4 and C6 compositions as major products. The plausible mechanistic insight concerning the process of ethylene oligomerization is also broached.

An example of trinuclear pyridylimine based palladium(II) complex having a functionalized star polystyrene core.  相似文献   


17.
The synthesis and characterization of a range of chiral β-diimine ligands and their complexes with palladium(II) has been investigated. The introduction of chirality can be easily achieved through a combination of both achiral and chiral building blocks. The absolute configuration of the stereochemical centers has been determined. In addition, representative X-ray structures of both ligands and complexes have been determined.  相似文献   

18.
Cis-transoidal poly((4-carboxyphenyl)acetylene) (poly-1) is an optically inactive polymer but forms an induced one-handed helical structure upon complexation with optically active amines such as (R)-(1-(1-naphthyl)ethyl)amine ((R)-2) in DMSO. The complexes show a characteristic induced circular dichroism (ICD) in the UV-visible region of the polymer backbone. Moreover, the macromolecular helicity of poly-1 induced by (R)-2 can be "memorized" even after complete replacement of (R)-2 by various achiral amines. We now report fully detailed studies on the mechanism of the helicity induction and memory of the helical chirality of poly-1 by means of UV-visible, CD, and infrared spectroscopies. We have found that a one-handed helix is cooperatively induced on poly-1 upon the ion pair formation of the carboxy groups of poly-1 with optically active amines and that the bulkiness of the chiral amines plays a crucial role for inducing an excess of a single-handed helix. On the other hand, the free ion formation was found to be essential for the macromolecular helicity memory of poly-1 after the replacement of the chiral amine by achiral amines, since the intramolecular electrostatic repulsion between the neighboring carboxylate ions of poly-1 significantly contributes to reduce the atropisomerization process of poly-1. On the basis of the mechanism of helicity induction and the memory of the helical chirality drawn from the present studies, we succeeded in creating an almost perfect memory of the induced macromolecular helicity of poly-1 with (R)-2 by using 2-aminoethanol as an achiral chaperoning molecule to assist in maintaining the memory of helical chirality.  相似文献   

19.
A stereoregular poly(phenylacetylene) bearing an N,N‐diisopropylaminomethyl group as the pendant (poly‐ 1 ) changed its structure into the prevailing one‐handed helical conformation upon complexation with optically active acids in water. The complexes exhibited induced circular dichroism (ICD) in the UV/Vis region of the polymer backbone. Poly‐ 1 is highly sensitive to the chirality of chiral acids and can detect a small enantiomeric imbalance in these acids, in particular, phenyl lactic acid in water. For example, a 0.005 % enantiomeric excess of phenyl lactic acid can be detected by CD spectroscopy. The observed ICD intensity and pattern of poly‐ 1 were dependent on the temperature and concentration of poly‐ 1 , probably due to aggregations of the polymer at high temperature as revealed by dynamic light scattering and AFM. On the basis of the temperature‐dependent ICD changes, the preferred chiral helical sense of poly‐ 1 was found to be controlled by noncovalent bonding interactions by using structurally different enantiomeric acids.  相似文献   

20.
The temperature dependence of chiral separations was investigated in combined system of reversed-phase (RP) liquid chromatography using two chiral additives: single or β native cyclodextrins and their permethylated derivatives. The model tested compounds of pharmaceutical interest were: methylphenobarbital, mephenytoin, morsuximide and camphor. Taking the localization of a complexation process as a criterion – the combined system with two selectors has been rationalized as occurring in three stages. The influence of temperature (in narrow range of 20°C) on retention and enantioselectivity was studied in; System I (complexation occurs in the mobile phase), in System II (complexation on the stationary phase) and in System III (complexation in both phases together). In System III (as for System I) it has been found that the model compounds could be classified into three groups based on their retention dependence on temperature: retention decrease with temperature decrease, retention increase with temperature decrease or no influence of temperature on retention. For all the compounds investigated, decrease in temperature increases the selectivity. Standard enthalpy (ΔH0) and entropy (ΔS0) changes of solute transfer between the mobile and the stationary phase and standard enthalpy (ΔH0CD) and entropy (ΔS0CD) changes of complex formation were also calculated. In Systems I and III, if the complexation in the mobile phase is favored process compared with interaction with the stationary phases (RP or covered by permethylated cyclodextrin), the shortest retention time and the best selectivity is observed at low temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号