首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wei Zhou  Manlin Tan 《Optik》2012,123(23):2171-2173
SnO2-CuO nanocomposite was synthesized by impregnating SnO2 nanowires with CuCl2 solution and subsequent calcination. SEM and XRD were used to characterize the morphology and structure of the product. The optical properties were analyzed by Raman and photoluminescence (PL) spectra at room temperature. Except the strong orange emission of SnO2, the PL spectrum showed a red shoulder at 678 nm which originated from the interface between SnO2 and CuO.  相似文献   

2.
Nanocrystalline SnO2 thin films were deposited by simple and inexpensive chemical route. The films were characterized for their structural, morphological, wettability and electrochemical properties using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy techniques (SEM), transmission electron microscopy (TEM), contact angle measurement, and cyclic voltammetry techniques. The XRD study revealed the deposited films were nanocrystalline with tetragonal rutile structure of SnO2. The FT-IR studies confirmed the formation of SnO2 with the characteristic vibrational mode of Sn-O. The SEM studies showed formation of loosely connected agglomerates with average size of 5-10 nm as observed from TEM studies. The surface wettability showed the hydrophilic nature of SnO2 thin film (water contact angle 9°). The SnO2 showed a maximum specific capacitance of 66 F g−1 in 0.5 Na2SO4 electrolyte at 10 mV s−1 scan rate.  相似文献   

3.
在室温及不同的氧氩比条件下,采用射频磁控溅射Ag层和直流磁控溅射SnO2层,在载玻片衬底上制备出了SnO2/Ag/SnO2多层薄膜.用霍尔效应测试仪、四探针电阻测试仪和紫外-可见-近红外光谱仪等表征了薄膜的电学性质和光学性质.实验结果表明:当氧氩比为1:14时,所制得的薄膜的光电性质优良指数最大,为1.69×10-2 Ω-1;此时,薄膜的电阻率为9.8×10-5 Ω·cm,方电阻为9.68 Ω/sq,在400~800 nm可见光区的平均光学透射率达85%;并且,在氧氩比为1:14时,利用射频磁控溅射Ag层和直流磁控溅射SnO2层在PET柔性衬底上制备出了光电性质优良的柔性透明导电膜,其在可见光区的平均光学透过率达85%以上,电阻率为1.22×10-4 Ωcm,方电阻为12.05 Ω/sq.  相似文献   

4.
张磊  叶辉  皇甫幼睿  刘旭 《物理学报》2011,60(7):76103-076103
在化学氧化得到的二氧化硅薄层覆盖的硅衬底上,室温淀积锗膜并进行后期退火处理.实验表明,不同于传统退火过程形成大岛,通过一定工艺的控制可以获得高密度(~1011 cm-2)的均匀锗量子点.研究了后期退火温度对量子点的结构影响的局部反常规律并进行了原因分析.利用拉曼和荧光光谱研究了其应力和发光特性,发现在可见(500 nm)和近红外(1350 nm)的两个光致荧光峰出现. 关键词: 锗量子点 二氧化硅 退火  相似文献   

5.
Aligned tin dioxide (SnO2) nanotubes have been synthesized by high-frequency inductive heating. Nanotubes with high yield were grown on silicon substrates in less than 5 min, using SnO2 and graphite as the source powder. Scanning electron microscopy and transmission electron microscopy showed nanotube with diameters from 50 to 100 nm and lengths up to tens of mircrometers. The SnO2 nanotubes synthesized under the optimum condition have better field-emission characteristics. The turn-on field needed to produce a current density of 10 μA/cm2 is found to be 1.64 V/μm. The samples show good field-emission properties with a fairly stable emission current. This type of SnO2 nanotubes can be applied as field emitters in displays as well as vacuum electric devices.  相似文献   

6.
The microstructure and optical properties of Ni-doped SnO2 nano-powders are studied in detail. By Ni-doping, not only the grain size reduces, but also the grain shape changes from nano-rods to spherical particles. The crystallization becomes better with annealing temperature increasing. The band gap energy decreases as nickel doping level increases. The sp-d hybridization and alloying effect due to amorphous SnO2-x phase should be responsible for the band gap narrowing effect. Nickel dopant does not change the photoluminescence (PL) peak positions.  相似文献   

7.
利用简单的化学气相沉积法,以Sn粉为源材料合成不同形貌的一维SnO2纳米棒、纳米线和纳米花等纳米结构,并通过减小载气中的氧含量获得新颖的SnO2亚微米环状结构.通过调节Sn粉的量和载气中的氧含量、升温速率等试验条件,有效实现SnO2一维纳米结构的控制生长.采用扫描电子显微镜、能谱仪和X射线衍射仪表征产物形貌、成分和物相结构,并探讨了SnO2微纳米材料的生长机理. 关键词: 2')" href="#">SnO2 纳米结构 亚微米环 生长机理  相似文献   

8.
The electronic structures and magnetic properties of Zn- and Cd-doped SnO2 are investigated using first-principles calculations within the generalized gradient approximation (GGA) and GGA+U scheme. The substitutional Zn and Cd atoms introduce holes in the 2p orbitals of the O atoms and the introduced holes are mostly confined to the minority-spin states. The magnetic moment induced by doping mainly comes from the 2p orbitals of the O atoms, among which the moment of the first neighboring O atoms around the dopant are the biggest. The U correction for the anion-2p states obviously increases the moment of the first neighboring O atoms and transforms the ground states of the doped SnO2 from half-metallic to insulating. The magnetic coupling between the moments induced by two dopants is ferromagnetic and the origin of ferromagnetic coupling can be attributed to the p–d hybridization interaction involving holes.  相似文献   

9.
Gd-doped SnO2 nanoparticles were chemically prepared doping 0-12.5% Gd into SnO2 and calcined at 600 °C. X-ray diffraction and Fourier transformed infrared spectroscopy measurements show the formation of single phase of Sn1−xGdxO2 up to x=0.0625 while at x=0.125, an additional secondary phase of tetragonal GdO2 (not cubic Gd2O3) is detected. The transmission electron microscopy studies show that the individual particles are single crystalline with an average size in the range of 10-12 nm. Magnetization measurements show the absence of ferromagnetic and antiferromagnetic ordering in all samples; however surface spin effects and enhanced Gd-O-Gd interactions are proposed to account for the observed magnetic properties of the samples.  相似文献   

10.
11.
A simple and efficient way of making highly sensitive SnO2 nanowire-based gas sensors without an individual lithography process was studied. The SnO2 nanowires network was floated upon the Si substrate by separating the Au catalyst layer from the substrate. As the electric current is transported along the networks of the nanowires, not along the surface layer on the substrate, the gas sensitivities could be maximized in this networked and floated structures. The sensitivity was 5-30 when the NO2 concentration was 1-10 ppm. The response time was ca. 20-60 s.  相似文献   

12.
SnO2 nanowires mixed nanodendrites for high ethanol sensor response   总被引:1,自引:0,他引:1  
Mixed morphology of SnO2 nanowires and nanodendrites was synthesized on the gold-coated alumina substrates by carbothermal reduction of SnO2 in closed crucible. The products were characterized by scanning electron microscopy, x-ray diffractometer, and transmission electron microscopy. Results showed the SnO2 nanowires and the SnO2 nanodendrites branched out from the main nanowires. Both SnO2 nanostructures were pure tetragonal rutile structure. The nanowires were grown in [101] and directions with the diameter of 50–150 nm and the length of a few 10 μm. The nanodendrites were about 100–300 nm in diameter. The growth mechanism of the SnO2 nanostructures was also discussed. Characterization of ethanol gas sensor, based on the mixed morphology of the SnO2 nanostructures, was carried out. The optimal temperature was about 360 °C and the sensor response was 120 for 1000 ppm of ethanol concentration.  相似文献   

13.
Tin dioxide (SnO2) nanoparticles having 3 nm size were synthesized by irradiating pure tin metal using high power Nd:YAG laser in deionized water. Formation of nano-SnO2 crystallites was confirmed by X-ray diffraction (XRD) and AFM study. UV-vis absorption spectral studies showed a peak at 240 nm. FTIR spectrum showed a band in the range of 400-700 cm−1 which was assigned to Sn-O antisymmetric vibrations. Photoluminescence spectrum of synthesized SnO2 nanoparticles showed peak corresponding to 3.175, 2.901 and 2.613 eV respectively.  相似文献   

14.
SnO2/TiO2 mixed oxides with primary particle size ranging between 5 nm dp 12 nm were synthesized by doping a H2/O2/Ar flame with Sn(CH3)4 and Ti(OC3H7)4 co-currently. The effects of “flow coordinate,” concentration and flame configurations were investigated with respect to particle size and morphology of the generated mixed oxides. In situ characterization of the mixed oxides was performed using the particle mass spectrometer (PMS), while XRD, TEM, BET and UV–Vis were performed ex situ. Results obtained showed that primary particle size of mixed oxides can be controlled by varying experimental parameters. The mixed oxides have interesting properties compared to those of the pure oxides of TiO2 and SnO2, which were also synthesized in flames earlier. Band gap tuning opportunities are possible using mixed oxides.  相似文献   

15.
Field emission studies of a bunch and a single isolated RuO2:SnO2 wire have been performed. A current density of 5.73 × 104 A/cm2 is drawn from the single wire emitter at an applied field of 8.46 × 104 V/μm. Nonlinearity in the Fowler-Nordheim (F-N) plot has been observed and explained on the basis of electron emission from both the conduction and the valence bands of the semiconductor. The current stability recorded at the preset value of 1.5 μA is observed to be good. Overall the high emission current density, good stability and mechanically robust nature of the RuO2:SnO2 wires offer advantages as field emitters for many potential applications.  相似文献   

16.
We focused on the effects of the inorganic acid HNO3 on the gas-sensing properties of nanometer SnO2 and prepared the powders via a dissolution-pyrolysis method. Furthermore, the powders were characterized by means of X-ray diffraction (XRD), scanning electron microscope (SEM), field emission scanning electron microscopy (FESEM) and energy-dispersive X-ray spectra (EDS). Several aspects were surveyed, including the calcining temperature, concentration of nitric acid and the working temperature. The results showed that the gas response of 3 wt% HNO3-doped SnO2 powders (calcined at 500 °C) to 10 ppm Cl2 reached 316.5, at the working temperature 175 °C. Compared with pure SnO2, appropriate HNO3 could increase the gas sensitivity to Cl2 gas more significantly.  相似文献   

17.
近年来,铅卤钙钛矿CsPbX3 (X=Cl,Br或I)因其具有荧光波段可调、荧光量子产率高(Photoluminescence quantum yield,PLQY)以及荧光半峰宽窄等优点而被广泛应用于光电器件领域.然而,与PLQY接近于100%的绿光和红光相比,蓝光卤素钙钛矿的PLQY仍比较低.在此,采用过饱和结晶的方法在室温下合成了粒径低于4 nm的超小晶粒锡(Sn)掺杂CsPbBr3量子点,并对其结构特性和光学特性进行了研究.结果表明:随着SnBr2添加量的增大,量子点晶粒的粒径略微减小,荧光发射峰发生蓝移,粒径由3.33 nm (SnBr2为0.03 mmol)减小到2.23 nm(SnBr2为0.06 mmol时),对应的荧光发射峰由490 nm蓝移至472 nm.当SnBr2添加量为0.05 mmol时合成的超小晶粒锡掺杂CsPbBr3量子点显示出最优的光学性能,其粒径约为2.91 nm,对应的XRD各晶面衍射峰强度最强,...  相似文献   

18.
SnO2 crystals with various morphologies were prepared by a facile hydrothermal method in the simple solution systems of SnCl2 and SnCl4, respectively. This process was carried out under mild conditions and required no high-temperature heat treatment. The morphological evolution with the preparation conditions was investigated. Various self-assembled hierarchical structures including microspheres assembled with nanoparticles, oriented nanocones, and flower-like, cabbage-like structures consisting of single-crystalline nanosheets were obtained by varying the solvent and the introduction of polyethylene glycol. A possible mechanism for the formation of the spherical hierarchically structures assembled by cone-like nanocrystals was proposed.  相似文献   

19.
In this study, SnO2/TiO2 thin films are fabricated on SiO2/Si and Corning glass 1737 substrates using a R.F. magnetron sputtering process. The gas sensing properties of these films under an oxygen atmosphere with and without UV irradiation are carefully examined. The surface structure, morphology, optical transmission characteristics, and chemical compositions of the films are analyzed by atomic force microscopy, scanning electron microscopy and PL spectrometry. It is found that the oxygen sensitivity of the films deposited on Corning glass 1737 substrates is significantly lower than that of the films grown on SiO2/Si substrates. Therefore, the results suggest that SiO2/Si is an appropriate substrate material for oxygen gas sensors fabricated using thin SnO2/TiO2 films.  相似文献   

20.
Zn2SnO4 (ZTO) nanowires with a unique dendritic nanostructure were synthesized via a simple one-step thermal evaporation and condensation process. The morphology and microstructure of the ZTO nanodendrite have been investigated by means of field emission scanning electron microscopy (SEM), x-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). SEM observation revealed the formation of branched nanostructures and showed that each branch exhibited a unique periodic structure formed by a row of overlaid rhombohedra of ZTO nanocrystals along the axis of the nanobranch. HRTEM studies displayed that the branches grew homoepitaxially as single-crystalline nanowires from the ZTO nanowire backbone. A possible growth model of the branched ZTO nanowires is discussed. To successfully prepare branched structures would provide an opportunity for both fundamental research and practical applications, such as three-dimensional nanoelectronics, and opto-electronic nanodevices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号