首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The excited state dynamics in polycrystalline thin films of tetracene are studied using both picosecond fluorescence and femtosecond transient absorption. The solid-state results are compared with those obtained for monomeric tetracene in dilute solution. The room temperature solid-state fluorescence decays are consistent with earlier models that take into account exciton-exciton annihilation and exciton fission but with a reduced delayed fluorescence lifetime, ranging from 20-100 ns as opposed to 2?μs or longer in single crystals. Femtosecond transient absorption measurements on the monomer in solution reveal several excited state absorption features that overlap the ground state bleach and stimulated emission signals. On longer timescales, the initially excited singlet state completely decays due to intersystem crossing, and the triplet state absorption superimposed on the bleach is observed, consistent with earlier flash photolysis experiments. In the solid-state, the transient absorption dynamics are dominated by a negative stimulated emission signal, decaying with a 9.2 ps time constant. The enhanced bleach and stimulated emission signals in the solid are attributed to a superradiant, delocalized S(1) state that rapidly fissions into triplets and can also generate a second superradiant state, most likely a crystal defect, that dominates the picosecond luminescence signal. The enhanced absorption strength of the S(0)→S(1) transition, along with the partially oriented nature of our polycrystalline films, obscures the weaker T(1)→T(N) absorption features. To confirm that triplets are the major species produced by relaxation of the initially excited state, the delayed fluorescence and ground state bleach recovery are compared. Their identical decays are consistent with triplet diffusion and recombination at trapping or defect sites. The results show that complications like exciton delocalization, the presence of luminescent defect sites, and crystallite orientation must be taken into account to fully describe the photophysical behavior of tetracene thin films. The experimental results are consistent with the traditional picture that tetracene's photodynamics are dominated by exciton fission and triplet recombination, but suggest that fission occurs within 10 ps, much more rapidly than previously believed.  相似文献   

2.
We use ultrafast transient absorption spectroscopy with sub-20 fs time resolution and broad spectral coverage to directly probe the process of exciton fission in polycrystalline thin films of pentacene. We observe that the overwhelming majority of initially photogenerated singlet excitons evolve into triplet excitons on an ~80 fs time scale independent of the excitation wavelength. This implies that exciton fission occurs at a rate comparable to phonon-mediated exciton localization processes and may proceed directly from the initial, delocalized, state. The singlet population is identified due to the brief presence of stimulated emission, which is emitted at wavelengths which vary with the photon energy of the excitation pulse, a violation of Kasha's Rule that confirms that the lowest-lying singlet state is extremely short-lived. This direct demonstration that triplet generation is both rapid and efficient establishes multiple exciton generation by exciton fission as an attractive route to increased efficiency in organic solar cells.  相似文献   

3.
The excited state dynamics of polycrystalline tetracene films are studied using femtosecond transient absorption in combination with picosecond fluorescence, continuing work reported in an earlier paper [J. J. Burdett, A. M. Muller, D. Gosztola, and C. J. Bardeen, J. Chem. Phys. 133, 144506 (2010)]. A study of the intensity dependence of the singlet state decay is conducted to understand the origins of the discrepancy between the broadband transient absorption and fluorescence experiments seen previously. High-sensitivity single channel transient absorption experiments allow us to compare the transient absorption dynamics to the fluorescence dynamics measured at identical laser fluences. At high excitation densities, an exciton-exciton annihilation rate constant of ~1 × 10(-8) cm(3) s(-1) leads to rapid singlet decays, but at excitation densities of 2 × 10(17) cm(-3) or less the kinetics of the transient absorption match those of the fluorescence. At these lower excitation densities, both measurements confirm that the initially excited singlet state relaxes with a decay time of 80 ± 3 ps, not 9.2 ps as claimed in the earlier paper. In order to investigate the origin of the singlet decay, the wavelength-resolved fluorescence dynamics were measured at 298 K, 77 K, and 4 K. A high-energy J-type emitting species undergo a rapid (~100 ps) decay at all temperatures, while at 77 K and 4 K additional species with H-type and J-type emission lineshapes have much longer lifetimes. A global analysis of the wavelength-dependent decays shows that the initial ~100 ps decay occurs to a dark state and not via energy transfer to lower energy bright states. Varying the excitation wavelength from 400 nm to 510 nm had no effect on the fast decay, suggesting that there is no energy threshold for the initial singlet relaxation. The presence of different emitting species at different temperatures means that earlier interpretations of the fluorescence behavior in terms of one singlet state that is short-lived due to singlet fission at high temperatures but long-lived at lower temperatures are probably too simplistic. The presence of a rapid singlet decay at all temperatures indicates that the initially created J-type singlet exciton decays to an intermediate that only produces free triplets (and delayed fluorescence) at high temperatures.  相似文献   

4.
The photo-physical characteristics of semiconductor polymer are systematically stud-ied through comparing poly (9,9-dioctylfluorene) (PFO) and poly (9,9-dioctylfluorene-co-benzothiadiazole) (F8BT). The quantum chemical calculation shows that the introduction of benzothiadiazole unit facilitates the intrachain charge transfer (ICT) and modulates the electronic transition mechanism of polymer. The transient absorption measurement exhibits that intrachain exciton relaxation is dominant in the decay of excited PFO in a monodis-perse system and intrachain exciton interaction could appear at high excitation intensity. In F8BT solution, the ICT state exists and participates in the relaxation of excited state. The relaxation processes of PFO and F8BT in the condensed phase both accelerate and show obvious exciton-exciton annihilation behavior at high excitation intensity. At the same excitation intensity, the mean lifetime of F8BT is longer than that of PFO, which may be assigned to the excellent delocalization of charge.  相似文献   

5.
The time-resolved luminescence spectra (in the microsecond range) of phycobilisomes and biliproteins in buffer and polymer matrix were measured in the temperature range from 8 K. to 293 K. Delayed luminescence located in the same spectral region as prompt fluorescence of investigated samples (DLF) and the long-wavelength delayed emission in the720–760 nm range (DL1) was observed. The temperature and viscosity dependencies of DLF and DL1 luminescences were different, but both do not have uniexponential decays and are not quenched by oxygen. This means that delayed luminescence could be generated without the participation of the triplet states, or the chromophores could be shielded by protein against interaction with oxygen. The linear dependence of delayed luminescence on exciting light intensity shows that delayed luminescence is monophotonically induced. It seems that both DLF and DL1 are related to electron-cation recombination, which yields excited singlet states. The DLF is emitted from the first excited singlet state of biliprotein chromophores and DL1 from the same state of the excimers or from the triplet state of some groups of chromophores. Ionization energy of chromophores can be lowered as a result of their interactions with the environment. Delay of emission is due to the trapping or solvation of electrons. Every type of biliprotein consisting of phycobilisomes possesses its own “trap” and can emit the DL. In the case of native phycobilisomes a competition between the excitation energy trapping and transfer occurs.  相似文献   

6.
As an excellent artificial photosynthetic reaction center, the carotene (C)‐porphyrin (P)‐fullerene (F) triad was extensively investigated experimentally. To reveal the mechanism of the intramolecular charge transfer (ICT) on the mimic of photosynthetic solar energy conversion (such as singlet energy transfer between pigments, and photoinduced electron transfer from excited singlet states to give long‐lived charge‐separated states), the ICT mechanisms of C‐P‐F triad on the exciton were theoretically studied with quantum chemical methods as well as the 2D and 3D real space analysis approaches. The results of quantum chemical methods reveal that the excited states are the ICT states, since the densities of HOMO are localized in the carotene or porphyrin unit, and the densities of LUMO are localized in the fullerene unit. Furthermore, the excited states should be the intramolecular superexchange charge transfer (ISCT) states for the orbital transition from the HOMO whose densities are localized in the carotene to the LUMO whose densities are localized in the fullerene unit. The 3D charge difference densities can clearly show that some excited states are ISCT excited states, since the electron and hole are resident in the fullerene and carotene units, respectively. From the results of the electron‐hole coherence of the 2D transition density matrix, not only 3D results are supported, but also the delocalization size on the exciton can be observed. These phenomena were further interpreted with non‐linear optical effect. The large changes of the linear and non‐linear polarizabilities on the exciton result in the charge separate states, and if their changes are large enough, the ICT mechanism can become the ISCT on the exciton.  相似文献   

7.
A cofacially stacked perylenediimide (PDI) dimer with a xanthene linker was studied under a variety of conditions (solvent, temperature) and serves as a model for the molecular interactions occurring in solid films. Intrinsically, the PDI units have a fluorescence quantum yield (Phi F) close to unity, but Phi F is lowered by a factor of 6-50 at room temperature when two PDI moieties are held in a cofacial arrangement, while the decay time of the most emissive state is increased significantly (tau F = 27 ns in toluene) compared to a monomeric PDI molecule (tau F = 4 ns). Fluorescence measurements show a strong solvent and temperature dependence of the characteristics of the emissive excited state. In a glassy matrix of toluene (TOL) or 2-methyltetrahydrofuran (2-MeTHF), Phi F is high, and the decay time is long (tau F = approximately 50 ns). At higher temperature, both Phi F and tau F are reduced. Interestingly, at room temperature, Phi F and tau F are also reduced with increasing solvent polarity, revealing the presence of a polar transition state. Photoinduced absorption of the stacked molecules from the picosecond to the microsecond time scale shows that after photoexcitation reorganization occurs in the first nanoseconds, followed by intersystem crossing (ISC), producing the triplet excited state. Using singlet oxygen ( (1)Delta g) luminescence as a probe, a triplet quantum yield (Phi T) greater than 50% was obtained in air-saturated 2-Me-THF. Triplet formation is exceptional for PDI chromophores, and the enhanced ISC is explained by a decay involving a highly polar transition state.  相似文献   

8.
9.
Exciton (or spin) statistics is a physical principle based on the statistics of spin multiplicity. In electroluminescence, injected electrons and holes have randomized spin states, and usually form singlet or triplet excitons in the ratio of 1:3. Exciton statistics determines that the upper limit of internal quantum efficiency is 25% in fluorescent devices, since only singlet exciton can decay radiatively. However, both experimental and theoretical evidence indicate that the actual efficiency can exceed the exciton statistics limit of 25% by utilizing materials with special electronic structure and optimized device structures. These results bring light to break through the exciton statistics limit and develop new-generation fluorescent materials with low cost and high efficiency. Recently, the exciton statistics, which has attracted great attention in the past decade, is being rejuvenated due to the discovery of some fluorescent materials with abnormally high efficiencies. In view of their significance in theoretical research of organic semiconductors and developing new-generation OLED materials, such materials are widely investigated in both academic institutions and industry. Several key issues still require further clarification for this kind of materials, such as the molecular design concepts. Herein, we review the progress of the materials with efficiency exceeding the exciton statistics limit, and the routes to improve exciton utilization efficiency. In the end, we present an innovative pathway to fully harvest the excitons in fluorescent devices, namely, “hot exciton” model and relevant fluorescence material with hybridized local and charge-transfer (HLCT) excited state.  相似文献   

10.
Using two frequency-doubled, nitrogen laser pumped, dye-lasers we have measured the decay of the photon-echo in the lowest 1B1u1A1g singlet state of naphthalene in durene and in perdeutero-naphthalene. Optical phase relaxation in the durene mixed crystal is believed to be caused by resonant phonon scattering in the ground and excited state, and in the isotopically mixed crystal by scattering of the excited state into the singlet exciton band. At the lowest achievable temperature (1.4 K), the photon-echo decay time (T2) in both systems is still found to be much shorter than expected from the fluorescence decay times. Energy transfer is held responsible for this discrepancy.  相似文献   

11.
Photophysical properties have been recorded for a ruthenium(II) bis(2,2':6',2' '-terpyridine) complex bearing a single ethynylene substituent. The target compound is weakly emissive in fluid solution at room temperature, but both the emission yield and lifetime increase dramatically as the temperature is lowered. As found for the unsubstituted parent complex, the full temperature dependence indicates that the lowest-energy triplet state couples to two higher-energy triplets and to the ground state. Luminescence occurs only from the lowest-energy triplet state, but the radiative and nonradiative decay rates indicate that electron delocalization occurs at the triplet level. Comparison of the target compound with the parent complex indicates that the ethynylene group reduces the size of the electron-vibrational coupling element for nonradiative decay of the lowest-energy triplet state. Although other factors are affected by substitution, this is by far the most important feature with regard to stabilization of the triplet state.  相似文献   

12.
The electronic structure and size-scaling of optoelectronic properties in cycloparaphenylene carbon nanorings are investigated using time-dependent density functional theory (TDDFT). The TDDFT calculations on these molecular nanostructures indicate that the lowest excitation energy surprisingly becomes larger as the carbon nanoring size is increased, in contradiction with typical quantum confinement effects. In order to understand their unusual electronic properties, I performed an extensive investigation of excitonic effects by analyzing electron-hole transition density matrices and exciton binding energies as a function of size in these nanoring systems. The transition density matrices allow a global view of electronic coherence during an electronic excitation, and the exciton binding energies give a quantitative measure of electron-hole interaction energies in the nanorings. Based on overall trends in exciton binding energies and their spatial delocalization, I find that excitonic effects play a vital role in understanding the unique photoinduced dynamics in these carbon nanoring systems.  相似文献   

13.
Strongly luminescent neutral copper(I) complexes of the type Cu(pop)(NN), with pop = bis(2-(diphenylphosphanyl)phenyl)ether and NN = bis(pyrazol-1-yl)borohydrate (pz(2)BH(2)), tetrakis(pyrazol-1-yl)borate (pz(4)B), or bis(pyrazol-1-yl)-biphenyl-borate (pz(2)Bph(2)), are readily accessible in reactions of Cu(acetonitrile)(4)(+) with equimolar amounts of the pop and NN ligands at ambient temperature. All products were characterized by means of single crystal X-ray diffractometry. The compounds exhibit very strong blue/white luminescence with emission quantum yields of up to 90%. Investigations of spectroscopic properties and the emission decay behavior in the temperature range between 1.6 K and ambient temperature allow us to assign the emitting electronic states. Below 100 K, the emission decay times are in the order of many hundreds of microseconds. Therefore, it is concluded that the emission stems from the lowest triplet state. This state is assigned to a metal-to-ligand charge-transfer state (3MLCT) involving Cu-3dand pop-π* orbitals. With temperature increase, the emission decay time is drastically reduced, e.g. to 13 μs [corrected] (Cu(pop)-(pz(2)Bph(2))), at ambient temperature. At this temperature, the complexes exhibit high emission quantum yields, as neat material or doped into poly(methyl methacrylate) (PMMA). This behavior is assigned to an efficient thermal population of a singlet state (being classified as (1)MLCT), which lies only 800 to 1300 cm(-1) above the triplet state, depending on the individual complex. Thus, the resulting emission at ambient temperature largely represents a fluorescence. For applications in OLEDs and LEECs, for example, this type of thermally activated delayed fluorescence (TADF) creates a new mechanism that allows to harvest both singlet and triplet excitons (excitations) in the lowest singlet state. This effect of singlet harvesting leads to drastically higher radiative rates than obtainable for emissions from triplet states of Cu(I) complexes.  相似文献   

14.
The target donor-acceptor compound forms an acridinium-like, locally excited (LE) singlet state on illumination with blue or near-UV light. This LE state undergoes rapid charge transfer from the acridinium ion to the orthogonally sited mesityl group in polar solution. The resultant charge-transfer (CT) state fluoresces in modest yield and decays on the nanosecond time scale. The LE and CT states reside in thermal equilibrium at ambient temperature; decay of both states is weakly activated in fluid solution, but decay of the CT state is activationless in a glassy matrix. Analysis of the fluorescence spectrum allows precise location of the relevant energy levels. Intersystem crossing competes with radiative and nonradiative decay of the CT state such that an acridinium-like, locally excited triplet state is formed in both fluid solution and a glassy matrix. Phosphorescence spectra position the triplet energy well below that of the CT state. The triplet decays via first-order kinetics with a lifetime of ca. 30 micros at room temperature in the absence of oxygen but survives for ca. 5 ms in an ethanol glass at 77 K. The quantum yield for formation of the LE triplet state is 0.38 but increases by a factor of 2.3-fold in the presence of iodomethane. The triplet reacts with molecular oxygen to produce singlet molecular oxygen in high quantum yield. In sharp contradiction to a recent literature report, there is no spectroscopic evidence to indicate the presence of an unusually long-lived CT state.  相似文献   

15.
We studied the generation and decay dynamics of triplet excitons in tris-(8-hydroxyquinoline) aluminum (Alq3) thin films by using transient absorption spectroscopy. Absorption spectra of both singlet and triplet excitons in the film were identified by comparison with transient absorption spectra of the ligand molecule (8-hydroxyquinoline) itself and the excited triplet state in solution previously reported. By measuring the excitation light intensity dependence of the absorption, we found that exciton annihilation dominated under high-density excitation conditions. Annihilation rate constants were estimated to be gammaSS = (6 +/- 3) x 10(-11) cm3 s(-1) for single excitons and gammaTT = (4 +/- 2) x 10(-13) cm3 s(-1) for triplet excitons. From detailed analysis of the light intensity dependence of the quantum yield of triplet excitons under high-density conditions, triplet excitons were mainly generated through fission from highly excited singlet states populated by singlet-singlet exciton annihilation. We estimated that 30% of the highly excited states underwent fission.  相似文献   

16.
Optic—acoustic measurements have been employed in the determination of absolute quantum yields for benzene and naphthalene. Heat yields are measured by a method using oxygen quenching of both triplet and singlet states. For vibrationally relaxed excited singlet states the fluorescence quantum yields, φBf, are 0.16 ± 0.02 and 0.79 ± 0.02 for benzene and naphthalene respectively. For 0.07 torr naphthalene at room temperature with 248 nm excitation, φf = 0.35 ± 0.03 and the quantum yield of internal conversion is less than 0.05. The decay of the highly vibrationally excited triplet state is dominated by vibrational relaxation for 0.07 torr naphthalene, but for benzene, even at high pressures, strong competition comes from an indirect coupling process to the ground state.  相似文献   

17.
采用Frenkel激子理论研究了一维线性和二维人字形分子聚集体的吸收和发射光谱.通过引入激子离域长度的概念,将聚集体与单分子的光谱线形函数联系起来.计算的光谱结果表明,聚集体的光谱与分子在聚集体中的排列紧密相关.分析了一维J聚集光谱发生红移以及二维人字形分子聚集体吸收光谱形成J和H激子谱带的内在原因.模拟得到的聚集体的...  相似文献   

18.
In tetracene doped anthracene, the magnetic field modulation of prompt tetracene fluorescence following excitation into the anthracene singlet manifold has been measured as a function of the magnetic field orientation and optical excitation energy. The results show that this modulation with low energy excitation is caused by singlet heterofission into one anthracene triplet exciton and one tetracene triplet. With higher excitation energies this modulation is due to both the singlet heterofission and also singlet homofission into a pair of anthracene triplet excitons. Heterofission occurs mainly from anthracene molecules next to a tetracene and competes with the singlet trapping. From the singlet trapping rate and from the magnetic modulation of tetracene prompt fluorescence the heterofission rate is estimated as ≈10?11s?1.  相似文献   

19.
Based on the operatorial formulation of the perturbation theory, the properties of a confined exciton coupled with phonons in thermal equilibrium is revisited. Within this method, the dynamics is governed by an effective Hamiltonian which accounts for exciton-phonon entanglement. The exciton is dressed by a virtual phonon cloud whereas the phonons are clothed by virtual excitonic transitions. Special attention is thus paid for describing the time evolution of the excitonic coherences at finite temperature. As in an infinite lattice, temperature-enhanced quantum decoherence takes place. However, it is shown that the confinement softens the decoherence. The coherences are very sensitive to the excitonic states so that the closer to the band center the state is located, the slower the coherence decays. In particular, for odd lattice sizes, the coherence between the vacuum state and the one-exciton state exactly located at the band center survives over an extremely long time scale. A superimposition involving the vacuum and this specific one-exciton state behaves as an ideal qubit insensitive to its environment.  相似文献   

20.
The polarized optical absorption spectra of different quaterthiophene single crystals in the energy region of the exciton bands originating from the first molecular transition are reported as measured in the temperatures ranging from 7 to 140 K. The intrinsic higher mobility of the b-polarized 0-0 a(u) exciton both with respect to its replicas and to the a-polarized structures is demonstrated in high quality crystals at the lowest temperatures. The influence of structural disorder on mobility is discussed considering, for the different samples, the measured lineshape and linewidth of the absorption peaks, and the relative lineshift and intensity ratio between the 0-0 a(u) line and its first replica at the lowest temperature. The influence of dynamic disorder is discussed considering the lineshape and linewidth of the measured peaks as a function of temperature for both polarizations in the framework of the exciton-phonon coupling theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号