首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The highly reactive, six-coordinate tris-aryloxide U(III) species, [((t-BuArO)3tacn)U] (1) reacts with CO2 in a 2e- reduction to produce CO and a dinuclear U(IV/IV) mu-oxygen bridged complex [{((t-BuArO)3tacn)U}2(mu-O)] (2). This reaction proceeds via a dinuclear CO2-bridged intermediate 3. Also, mononuclear 1 was treated with 1 atm of CO to yield dinuclear [{((t-BuArO)3tacn)U}2(mu-CO)] (4) with a CO ligand bridging two uranium ions in an unprecedented mu:eta1,eta1 fashion. The mixed-valent azido-bridged U(III/IV) complex 5 was synthesized from trivalent 1 and tetravalent [((t-BuArO)3tacn)U(N3)] and serves as an isostructural analogue of triatomic-bridged intermediate 3 as well as an electronic model for mixed-valent 4.  相似文献   

2.
The synthesis and spectroscopic characterization of the mononuclear uranium complex [((ArO)(3)tacn)U(III)(NCCH(3))] is reported. The uranium(III) complex reacts with organic azides to yield uranium(IV) azido as well as uranium(V) imido complexes, [((ArO)(3)tacn)U(IV)(N(3))] and [((ArO)(3)tacn)U(V)(NSi(CH(3))(3))]. Single-crystal X-ray diffraction, spectroscopic, and computational studies of this analogous series of uranium tris-aryloxide complexes supported by triazacyclononane are described. The hexadentate, tris-anionic ligand coordinates to the large uranium ion in unprecedented fashion, engendering coordinatively unsaturated and highly reactive uranium centers. The macrocyclic triazacyclononane tris-aryloxide derivative occupies six coordination sites, with the three aryloxide pendant arms forming a trigonal plane at the metal center. DFT quantum mechanic methods were applied to rationalize the reactivity and to elucidate the electronic structure of the newly synthesized compounds. It is shown that the deeply colored uranium(III) and uranium(V) species are stabilized via pi-bonding interaction, involving uranium f-orbitals and the axial acetonitrile and imido ligand, respectively. In contrast, the bonding in the colorless uranium(IV) azido complex is purely ionic in nature. The magnetism of the series of complexes with an [N3O3-N(ax)] core structure and oxidation states +III, +IV, and +V is discussed in context of the electronic structures.  相似文献   

3.
The reaction of [((t-Bu)ArO) 3tacn)U (III)] ( 1) with 4,4'-di- tert-butylbenzophenone affords a unique isolable U(IV) ketyl radical species [((t-Bu)ArO) 3tacn)U (IV)(OC* (t-Bu)Ph 2)] (2) supported by XRD data, magnetization measurements, and DFT calculations. Isolation and full characterization of the corresponding diphenyl methoxide complex [((t-Bu)ArO) 3tacn)U (IV)(OCH ( t-Bu )Ph 2)] (3) is also presented. The one-electron reduction of benzophenone by [((Ad)ArO) 3tacn)U (III)] (4) leads to a purple U(IV) ketyl radical intermediate [((Ad)ArO) 3tacn)U (IV)(OC*Ph 2)] (5). This species is highly reactive, and attempts at isolation were unsuccessful and resulted in methoxide complex [((Ad)ArO) 3tacn)U (IV)(OCHPh 2)] (6) from H abstraction and dinuclear para-coupled complex [((Ad)ArO) 3tacn)U (IV)(OCPhPhCPh 2O)U (IV)((Ad)ArO) 3tacn)] (7).  相似文献   

4.
The diamantane functionalized triazacyclononane ligand (DiaArOH)3tacn (L3) has been synthesized and the reactivity of its U(III) metallated product [((DiaArO)3tacn)U] (1) has been explored. Complex 1 promotes dichloromethane and azidotrimethylsilane activation to generate U(IV) complex [((DiaArO)3tacn)U(Cl)] (2) and U(V) complex [((DiaArO)3tacn)U(NTMS)] (3), respectively. Spectroscopic investigations of complexes 1, 2, and 3 will be discussed, along with molecular structures where possible.  相似文献   

5.
Reaction of [(((Ad)ArO)(3)tacn)U(III)] (1) or [((Me(3)Si)(2)N)(3)U(III)] (3) with tetramethylimidazol-2-ylidene (Me(4)IMC:) yields novel N-heterocyclic carbene complexes [(((Ad)ArO)(3)tacn)U(III)(Me(4)IMC:)] (2) and [((Me(3)Si)(2)N)(3)U(III)(Me(4)IMC:)] (4). Uranium complexes 2 and 4 represent the first examples of compounds with an N-heterocyclic carbene ligand coordinated to a low-valent uranium center. The paramagnetic complexes 1, 2, and 4 were characterized by (1)H NMR, UV-vis-NIR, and EPR spectroscopy as well as SQUID magnetization measurements and X-ray diffraction analyses. DFT studies indicate a significant degree of pi-bonding in the U(III)-carbene entity.  相似文献   

6.
The new neopentyl (Neop)-substituted tris(aryloxide) U(iii) complex [(((Neop,Me)ArO)(3)tacn)U(III)] reacts with CO(2) to form CO and the bridging carbonate complex [{(((Neop,Me)ArO)(3)tacn)U(IV)}(2)(μ-CO(3))]. The uranium(iv) bridging oxo [{(((Neop,Me)ArO)(3)tacn)U(IV)}(2)(μ-O)] has been determined to be the intermediate in this reaction. For the first time, both U(iv) complexes can be reduced back to the U(iii) starting material. Thus, with KC(8) as reductant, [(((Neop,Me)ArO)(3)tacn)U(III)] engages in a synthetic cycle, in which CO(2) is converted to CO and CO(3)(2-).  相似文献   

7.
Sterically pressured mid- to high-valent uranium complexes with an aryloxide substituted triazacyclononane ligand scaffold, [(((R)ArO)3tacn)(3-)], were studied for carbon dioxide activation and transformation chemistry. The high valent uranium(V) imido species [(((R)ArO)3tacn)U(NR)] (R = (t)Bu, R' = 2,4,6-trimethylphenyl (2-(t)Bu); R = Ad, R' = 2,4,6-trimethylphenyl (2-Ad); R = (t)Bu, R' = phenyl (3-(t)Bu)) were synthesized and spectroscopically characterized. X-ray crystallography of the tert-butyl mesityl imido derivative, 2-(t)Bu , reveals coordination of a bent imido fragment with a relatively long U-N bond distance of 2.05 A. The mesityl imido complexes reacted with carbon dioxide, readily extruding free isocyanate to produce uranium(V) terminal oxo species, [(((R)ArO)3tacn)U(O)] (R = (t)Bu (4-(t)Bu), Ad (4-Ad)), presumably through multiple bond metathesis via a uranium(V) carbimate intermediate. Using the smaller phenyl imido fragment in 3-(t) Bu slowed isocyanate loss, allowing the uranium(V) carbimate intermediate to undergo a second metathesis reaction, ultimately producing the diphenyl ureate derivative, [(((tBu)ArO)3tacn)U(NPh2)CO] (5-(t)Bu). Single crystal X-ray diffraction studies were carried out on both uranium(V) terminal oxo complexes and revealed short U-O bonds (1.85 A) indicative of a formal UO triple bond. The electronic structure of the oxo U(V) complexes was investigated by electronic absorption and EPR spectroscopies as well as SQUID magnetization and DFT studies, which indicated that their electronic properties are highly unusual. To obtain insight into the reactivity of CO2 with U-N bonds, the reaction of the uranium(IV) amide species, [(((R)ArO)3tacn)U(NHMes)] (R = (t)Bu (6-(t)Bu), Ad (6-Ad) with carbon dioxide was investigated. These reactions produced the uranium(IV) carbamate complexes, [(((R)ArO)3tacn)U(CO2NHMes)] (R = (t)Bu (7-(t)Bu), Ad (7-Ad)), resulting from insertion of carbon dioxide into U-N(amide) bonds. The molecular structures of the synthesized uranium carbamate complexes highlight the different reactivities due to the steric pressure introduced by the alkyl derivatized tris(aryloxide) triazacyclononane ligand. The sterically open tert-butyl derivative creates a monodentate eta(1)-O bound carbamate species, while the sterically more bulky adamantyl-substituted compound forces a bidentate kappa(2)-O,O coordination mode of the carbamate ligand.  相似文献   

8.
Treatment of [Ln(BH 4) 3(THF) 3] (Ln = Ce, Nd) with 3 and 4 mol equiv of KSBT in tetrahydrofuran (THF) led to the formation of [Ln(SBT) 3(THF)] and [K(THF)Ln(SBT) 4], respectively. The uranium(IV) compound [U(SBT) 4(THF) 2] was obtained from U(BH 4) 4 and was reversibly reduced by sodium amalgam into the corresponding anionic uranium(III) complex. The crystal structures of [Ln(SBT) 3(THF) 2] (Ln = Ce, Nd), [K(15-crown-5) 2][Nd(SBT) 4], [U(SBT) 4(THF)], and [K(15-crown-5) 2][U(SBT) 4(py)] show the bidentate coordination mode and the thionate character of the SBT ligand.  相似文献   

9.
Oxidation of our previously reported uranium(V) oxo complexes, supported by the chelating ((R)ArO)(3)tacn(3-) ligand system (R = tert-butyl (t-Bu), 1-t-Bu; R = 1-adamantyl (Ad), 1-Ad), yields terminal uranium(VI) oxo complexes [(((R)ArO)(3)tacn)U(VI)(O)]SbF(6) (R = t-Bu, 2-t-Bu; R = Ad, 2-Ad). These complexes differ in their molecular geometry in that 2-t-Bu possesses pseudo-C(s) symmetry in solution and solid state as the terminal oxo ligand lies in the equatorial plane (as defined by the three aryloxide arms of the ligand) in order to accommodate the thermodynamic preference of high-valent uranium oxo complexes to have a σ- and π-donating ligand trans to the oxo (vis-à-vis the ubiquity of the linear UO(2)(2+) moiety). The distortion of the ligand--which stands in contrast to all other complexes of uranium supported by the ((R)ArO)(3)tacn(3-) ligand, including 2-Ad--is most clearly seen in the structures of 2-t-Bu, [(((t-Bu)ArO)(3)tacn)U(VI)(O)(eq)]SbF(6), and 3-t-Bu, [(((t-Bu)ArO)(3)tacn)U(VI)(O)(eq)(OC(O)CF(3))(ax)]. The solid-state structure of 3-t-Bu reveals that the trans U-O(ArO) bond length is shortened by 0.1 ? in comparison to the cis U-O(ArO) bonds and the trans U-O-C(ipso) angle is linearized (157.67° versus 147.85° and 130.03°). Remarkably, the minor modification of the ligand to have Ad groups at the ortho positions of the aryloxide arms is sufficient to stabilize a C(3v)-symmetric terminal uranium(VI) oxo complex (2-Ad) without a ligand trans to the oxo. These experimental results were reproduced in DFT calculations and allow the qualitative bracketing of the relative thermodynamic stabilization afforded by the inverse trans-influence as ~6 kcal mol(-1).  相似文献   

10.
Treatment of [Ce(Cp*)(2)I] or [U(Cp*)(2)I(py)] with 1 mol equivalent of bipy (Cp*=C(5)Me(5); bipy=2,2'-bipyridine) in THF gave the adducts [M(Cp*)(2)I(bipy)] (M=Ce (1 a), M=U (1 b)), which were transformed into [M(Cp*)(2)(bipy)] (M=Ce (2 a), M=U (2 b)) by Na(Hg) reduction. The crystal structures of 1 a and 1 b show, by comparing the U-N and Ce-N distances and the variations in the C-C and C-N bond lengths within the bidentate ligand, that the extent of donation of electron density into the LUMO of bipy is more important in the actinide than in the lanthanide compound. Reaction of [Ce(Cp*)(2)I] or [U(Cp*)(2)I(py)] with 1 mol equivalent of terpy (terpy=2,2':6',2'-terpyridine) in THF afforded the adducts [M(Cp*)(2)(terpy)]I (M=Ce (3 a), M=U (3 b)), which were reduced to the neutral complexes [M(Cp*)(2)(terpy)] (M=Ce (4 a), M=U (4 b)) by sodium amalgam. The complexes [M(Cp*)(2)(terpy)][M(Cp*)(2)I(2)] (M=Ce (5 a), M=U (5 b)) were prepared from a 2:1 mixture of [M(Cp*)(2)I] and terpy. The rapid and reversible electron-transfer reactions between 3 and 4 in solution were revealed by (1)H NMR spectroscopy. The spectrum of 5 b is identical to that of the 1:1 mixture of [U(Cp*)(2)I(py)] and 3 b, or [U(Cp*)(2)I(2)] and 4 b. The magnetic data for 3 and 4 are consistent with trivalent cerium and uranium species, with the formulation [M(III)(Cp*)(2)(terpy(*-))] for 4 a and 4 b, in which spins on the individual units are uncoupled at 300 K and antiferromagnetically coupled at low temperature. Comparison of the crystal structures of 3 b, 4 b, and 5 b with those of 3 a and the previously reported ytterbium complex [Yb(Cp*)(2)(terpy)] shows that the U-N distances are much shorter, by 0.2 A, than those expected from a purely ionic bonding model. This difference should reflect the presence of stronger electron transfer between the metal and the terpy ligand in the actinide compounds. This feature is also supported by the small but systematic structural variations within the terdentate ligands, which strongly suggest that the LUMO of terpy is more filled in the actinide than in the lanthanide complexes and that the canonical forms [U(IV)(Cp*)(2)(terpy(*-))]I and [U(IV)(Cp*)(2)(terpy(2-))] contribute significantly to the true structures of 3 b and 4 b, respectively. This assumption was confirmed by the reactions of complexes 3 and 4 with the H(.) and H(+) donor reagents Ph(3)SnH and NEt(3)HBPh(4), which led to clear differentiation of the cerium and uranium complexes. No reaction was observed between 3 a and Ph(3)SnH, while the uranium counterpart 3 b was transformed in pyridine into the uranium(IV) compound [U(Cp*)(2){NC(5)H(4)(py)(2)}]I (6), where NC(5)H(4)(py)(2) is the 2,6-dipyridyl(hydro-4-pyridyl) ligand. Complex 6 was further hydrogenated to [U(Cp*)(2){NC(5)H(8)(py)(2)}]I (7) by an excess of Ph(3)SnH in refluxing pyridine. Treatment of 4 a with NEt(3)HBPh(4) led to oxidation of the terpy(*-) ligand and formation of [Ce(Cp*)(2)(terpy)]BPh(4), whereas similar reaction with 4 b afforded [U(Cp*)(2){NC(5)H(4)(py)(2)}]BPh(4) (6'). The crystal structures of 6, 6' and 7 were determined.  相似文献   

11.
A series of five uranium-alkane complexes of the general formula [(ArO)3tacn)U(alkane)].(cy-alkane) has been synthesized and crystallographically characterized. In all cases, X-ray diffraction studies revealed a pseudo-six-coordinate trivalent uranium core structure, [(ArO)3tacn)U], with a coordinated alkane ligand at the axial position. The average U-C bond distance to the bound alkane was determined to be 3.798 A, which is considerably shorter than the sum of the van der Waals radii of the U atom and a CH2 or CH3 unit (3.9 A). In all complexes, the alkane is coordinated in an eta2-H,C fashion.  相似文献   

12.
The reaction of (C5Me5)2U(CH3)2 with 2 equiv of N[triple bond]C-ArF gives the fluorinated uranium(IV) bis(ketimide) complexes (C5Me5)2U[-N=C(CH3)(ArF)]2 [where ArF=2-F-C6H4 (4), 3-F-C6H4 (5), 4-F-C6H4 (6), 2,6-F2-C6H3 (7), 3,5-F2-C6H3 (8), 2,4,6-F3-C6H2 (9), 3,4,5-F3-C6H2 (10), and C6F5 (11)]. These have been characterized by single-crystal X-ray diffraction, 1H and 19F NMR, cyclic voltammetry, UV-visible-near-IR absorption spectroscopy, and variable-temperature magnetic susceptibility. Density functional theory (DFT) results are reported for complexes 6 and 11 for comparison with experimental data. The most significant structural perturbation imparted by the F substitution in these complexes is a rotation of the fluorinated aryl (ArF) group out of the plane defined by the N=C(CMe)(Cipso) fragment in complexes 7, 9, and 11 when the ArF group possesses two o-fluorine atoms. Excellent agreement is obtained between the DFT-calculated and experimental crystal structures for 11, which displays the distortion, as well as for 6, which does not. In 7, 9, and 11, the out-of-plane rotation results in large angles (phi=53.7-89.4 degrees) between the planes formed by ketimide atoms N=C(CMe)(Cipso) and the ketimide aryl groups. Complexes 6 and 10 do not contain o-fluorine atoms and display interplanar angles in the range of phi=7-26.8 degrees. Complex 4 with a single o-fluorine substituent has intermediate values of phi=20.4 and 49.5 degrees. The distortions in 7, 9, and 11 result from an unfavorable steric interaction between one of the two o-fluorine atoms and the methyl group [-N=C(CH3)] on the ketimide ligand. All complexes exhibit UV/UIV and UIV/UIII redox couples, although the distortion in 7, 9, and 11 appears to be a factor in rendering the UIV/UIII couple irreversible. The potential separation between these couples remains constant at 2.15+/-0.03 V. The electronic spectra are dominated by unusually intense f-f transitions in the near-IR that retain nearly identical band energies but vary in intensity as a function of the fluorinated ketimide ligand, and visible and near-UV bands assigned to metal (5f)-to-ligand (pi*) charge-transfer and interconfiguration (5f2-->5f16d1) transitions, respectively. Variable-temperature magnetic susceptibility data for these complexes indicate a temperature-independent paramagnetism (TIP) below approximately 50 K that results from admixing of low-lying crystal-field excited states derived from the symmetry-split 3H4 5f2 manifold into the ground state. The magnitude of the TIP is smaller for the complexes possessing two o-fluorine atoms (7, 9, and 11), indicating that the energy separation between ground and TIP-admixed excited states is larger as a consequence of the greater basicity of these ligands.  相似文献   

13.
Heteroleptic aminotroponiminate complexes of calcium and strontium have been prepared. The monomeric calcium complex [((iPr)2ATI)CaI(THF)3] 1 ((iPr)2ATI = N-isopropyl-2-(isopropylamino)troponiminate) and the corresponding dimeric strontium compound [( (iPr)2ATI)SrI(THF)2]2 2 were obtained by reaction of [((iPr)2ATI)K] and MI2. Whereas the mixed ligand compound of composition [((iPr)2ATI)Ca(iPrAT)]2 3 (iPrAT = 2-(isopropylamino)troponate) was not obtained via a salt metathesis but by reaction of [Ca(N(SiMe3)2)2(THF)2] with ( (iPr)2ATI)H and (iPrAT)H, the diphosphanylamido complex [( (iPr)2ATI)Ca((Ph2P)2N)(THF)2] was obtained by reaction of CaI2 with the potassium compounds [( (iPr)2ATI)K] and [K(THF)n][N(PPh2)2]. The single crystal X-ray structures of all compounds were established and the latter compound shows a eta2-coordination mode of the ligand via the nitrogen and one phosphorus atom.  相似文献   

14.
The previously reported uranium(III) complex [(((Ad)ArO)(3)N)U(III)(DME)] (1; Ad = adamantane, DME = 1,2-dimethoxyethane) reacts with the terminal bis-alkynes 1,7-octadiyne or 1,6-heptadiyne in C-C-coupling reactions to form the uranium(IV) vinyl complexes [{(((Ad)ArO)(3)N)U(IV)}(2)(μ-η(2):η(1)-1,2-(CH)(2)-cyclohexane)] (2) and [{(((Ad)ArO)(3)N)U(IV)}(2)(μ-η(2):η(2)-1,2-(CH)(2)-cyclopentane)] (3). With the monoalkynes 1-hexyne or 4-(t)butyl-phenylacetylene, the complexes [{(((Ad)ArO)(3)N)U(IV)}(2)(μ-η(2)(C1):η(1)(C4)-2-(n)Bu-1,3-octadiene)] (4) and [{(((Ad)ArO)(3)N)U(IV)}(2)(μ-η(2)(C4):η(1)(C1)-1,3-di-(p-(t)Bu-phenyl)butadiene))] (5), are formed. These are the first four examples of uranium vinyl complexes that are reported and crystallographically characterized. In addition, detailed DFT calculations are presented to establish a possible mechanism for their formation and explain the differences found for the coordination of the hydrocarbon fragments. In contrast to a previously proposed monometallic pathway for catalytic hydroamination of alkynes and alkyne dimerization involving a uranium vinyl intermediate at uranium(III) complexes, the calculations clearly support a bimetallic mechanism, since its transition states are energetically the most favored.  相似文献   

15.
The new heterodinuclear complex [Fe(III)Zn(II)(BPBPMP)(OAc)(2)]ClO(4) (1) with the unsymmetrical N(5)O(2) donor ligand 2-bis[((2-pyridylmethyl)-aminomethyl)-6-[(2-hydroxybenzyl)(2-pyridylmethyl)]-aminomethyl]-4-methylphenol (H(2)BPBPMP) has been synthesized and characterized by X-ray crystallography, which reveals that the complex cation has an Fe(III)Zn(II)(mu-phenoxo)-bis(mu-carboxylato) core. Solution studies of 1 indicate that a pH-induced change of the bridging acetate occurs, and the formation of an active [(OH)Fe(III)Zn(II)(OH(2))] species as a highly efficient catalyst under weakly acidic conditions for phosphate diesters hydrolysis is proposed.  相似文献   

16.
Bidentate ligands can lead to stable eta(1)-allyl complexes of Pd(II). A novel chelating phosphonite-oxazoline P,N ligand, abbreviated NOPO(Me2), has been prepared by reaction of 6-chloro-6H-dibenz[c,e][1,2]oxaphosphorin with the lithium alcoholate derived from 4,4-dimethyl-2-(1-hydroxy-1-methylethyl)-4,5-dihydrooxazole. Its reaction with [Pd(eta(3)-C(3)H(5))(micro-Cl)](2) afforded the new eta(1)-allyl Pd complex [PdCl(eta(1)-C(3)H(5))(NOPO(Me2))] 2 in 91% yield. This constitutes a still rare example of structurally characterized eta(1)-allyl Pd(II) complex. Chloride abstraction led to the corresponding cationic eta(3)-allyl complex [Pd(eta(3)-C(3)H(5))(NOPO(Me2))]PF(6) 3, which has also been characterized by X-ray diffraction. CO insertion into the Pd-C sigma-bond of the eta(1)-allyl ligand of 2 afforded the corresponding 3-butenoyl palladium complex [PdCl[C(O)C(3)H(5)](NOPO(Me2))] 4 under mild conditions, which supports the view that CO insertion into eta(3)-allyl palladium cationic complexes occurs via first coordination of the counterion to form a more reactive eta(1)-allyl intermediate.  相似文献   

17.
A new high-yield synthesis of [(PhCH(2))(2)Mg(thf)(2)] and [[(PhCH(2))CH(3)Mg(thf)](2)] via benzylpotassium has allowed a simple entry into benzylmagnesium coordination chemistry. The syntheses and X-ray crystal structures of both [(eta(2)-Me(2)NCH(2)CH(2)NMe(2))Mg(CH(2)Ph)(2)] and [eta(2)-HC[C(CH(3))NAr'](2)Mg(CH(2)Ph)(thf)] (Ar'=2,6-diisopropylphenyl) are reported. The latter beta-diketiminate complex reacts with dioxygen to provide a 1:2 mixture of dimeric benzylperoxo and benzyloxo complexes. The benzylperoxo complex [[eta(2)-HC[C(CH(3))NAr'](2)Mg(mu-eta(2):eta(1)-OOCH(2)Ph)](2)] is the first example of a structurally characterised Group 2 metal-alkylperoxo complex and contains the benzylperoxo ligands in an unusual mu-eta(2):eta(1)-coordination mode, linking the two five-coordinate magnesium centres. The O[bond]O separation in the benzylperoxo ligands is 1.44(2) A. Reaction of the benzylperoxo/benzyloxo complex mixture with further [eta(2)-HC[C(CH(3))NAr'](2)Mg(CH(2)Ph)(thf)] results in complete conversion of the benzylperoxo species into the benzyloxo complex. This reaction, therefore, establishes the cleavage of dioxygen by this system as a two-step process that involves initial oxygen insertion into the Mg[bond]CH(2)Ph bond followed by O[bond]O/Mg[bond]C sigma-bond metathesis of the resulting benzylperoxo ligand with a second Mg[bond]CH(2)Ph bond. The formation of a 1:2 mixture of the benzylperoxo and benzyloxo species indicates that the rate of the insertion is faster than that of the metathesis, and this is shown to be consistent with a radical mechanism for the insertion process.  相似文献   

18.
Electron-rich uranium coordination complexes display a pronounced reactivity toward small molecules. In this Feature article, the exciting chemistry of trivalent uranium ions coordinated to classic Werner-type ligand environments is reviewed. Three fundamentally important reactions of the [(((R)ArO)3tacn)U]-system are presented that result in alkane coordination, CO/CO2 activation, and nitrogen atom-transfer chemistry.  相似文献   

19.
The preparation of a series of [Ru(III)(tacn)(eta(2)-dtc)(eta(1)-dtc)][PF(6)] (tacn = 1,4,7-triazacyclononane; dtc = dimethyldithiocarbamate, diethyldithiocarbamate, pyrrolidinedithiocarbamate, l-prolinedithiocarbamate, l-prolinemethyl ester dithiocarbamate, l-N-methylisoleucinedithiocarbamate) complexes, 5-11, is described. Complex 5 reacts with NO to form the ruthenium nitrosyl complex 12. A series of [Ru(III)(tacn)(pyc)Cl][PF(6)] (pyc = 2-pyridinecarboxylic acid, 2,4- and 2,6-pyridinecarboxylic acid) complexes, 14-16, were prepared along with [Ru(III)(tacn)(mida)][PF(6)] (mida = N-methyliminodiacetic acid), 13, and [Ru(III)(Hnota)Cl], 17, (Hnota = 1-acetic acid-4,7-bismethylcarboxylate-1,4,7-triazacyclononane). Complexes 5-17 were evaluated for use as NO scavengers in an in vitro assay using RAW264 murine macrophage cells. [Ru(III)(tacn)(eta(2)-dtc)(eta(1)-dtc)][PF(6)] complexes 5-11 are very efficient NO scavengers in this assay.  相似文献   

20.
A new hybrid organic-inorganic mixed-valent uranium oxyfluoride, (C6N2H14)2(U3O4F12), UFO-17, has been synthesized under hydrothermal conditions using uranium dioxide as the uranium source, hydrofluoric acid as mineralizer, and 1,4-diazabicyclo[2.2.2]octane as template. The single-crystal X-ray structure was determined. Crystals of UFO-17 belonged to the orthorhombic space group Cmcm (no. 63), with a = 14.2660(15) A, b = 24.5130(10) A, c = 7.201(2) A, and Z = 4. The structure reveals parallel uranium-containing chains of two types: one type is composed of edge-sharing UO2F5 units; the other has a backbone of edge-sharing UF8 units, each sharing an edge with a pendant UO2F5 unit. Bond-valence calculations suggest the UF8 groups contain UIV, while the UO2F5 groups contain UVI. EXAFS data give results consistent with the single-crystal X-ray structure determination, while comparison of the uranium LIII-edge XANES of UFO-17 with that of related UIV and UVI compounds supports the oxidation-state assignment. Variable-temperature magnetic susceptibility measurements on UFO-17 and a range of related hybrid organic-inorganic uranium(IV) and uranium(VI) fluorides and oxyfluorides further support the formulation of UFO-17 as a mixed-valent UIV/UVI compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号