首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple one-step extraction and cleanup using a pressurized liquid extraction method was developed for the gas chromatographic-mass spectrometric determination of pesticides in vegetables. The pressurized liquid extraction conditions were optimized and cleanup agents were evaluated. The investigated pesticides included six insecticides, chlorpyrifos methyl, pirimiphos-methyl, malathion, chlorpyrifos, O-ethyl O-4-nitrophenylphenyl phosphonothioate (EPN) and permethrins, a fungicide, isoprothiolane, and a herbicides, thiobencarb. The cleanup agent and a mixture of the vegetable and anhydrous sodium sulfate were separately packed in an extraction vessel. A transparent and colorless extract was obtained using graphitized carbon as the cleanup agent. The overall recoveries were 71-103% and the relative standard deviations ranged from 5.6 to 24%. The limit of detection values were 3-8 microg kg(-1). This method was successfully applied to green leafy vegetables.  相似文献   

2.
A new extraction and cleanup procedure with gas chromatography was developed for the sensitive determination of acephate, dimethoate, malathion, diazinon, quinalphos, chlorpyrifos, profenofos, alpha-endosulfan, beta-endosulfan, chlorothalonil and carbaryl using 1-chloro-4-fluorobenzene as an internal standard in fruits and vegetables. Several extracting and eluting solvents for solid-phase extraction were investigated. The overall extracting solvent with a mixture of acetone:ethyl acetate:hexane (10:80:10, v/v/v) and a eluting solvent of 5% acetone in hexane used with the RPC18 cartridge gave the best recovery for all of the investigated pesticides, and minimized the interference from co-extractants. Under the optimal extraction and clean-up conditions, recoveries of 85 - 99% with RSD < 5.0% (n = 3) for most of the pesticides at the 0.02 - 0.5 mg/kg level were obtained. The limit of detection was between 0.005 - 0.01 mg/kg and the limit of quantification was 0.01 mg/kg. This analytical procedure was characterized with high accuracy and acceptable sensitivity to meet requirements for monitoring pesticides in crops.  相似文献   

3.
A sensitive method for extraction and determination of three organophosphorus pesticides (chlorpyrifos, diazinon, phosalone) using a supramolecular solvent (SUPRAS) made of inverted hexagonal aggregates of alkanol and high-performance liquid chromatography with ultraviolet detection (HPLC–UV) was developed. The studied factors were alkanol amount, THF percentage (v/v), pH and vortex time. According to the full factorial design results, the effective parameters were alkanol amount, THF percentage (v/v) and pH. Then, a CCF was applied to obtain optimal conditions. The optimized conditions were obtained at 100 mg of alkanol, 5% of THF and pH 3.9. The limits of detection of pesticides were 0.5–1.3 ng/mL. The linearity was 1.6–500.0 ng/mL for different pesticides. Relative standard deviations for intra- and inter-day extraction of pesticides were 3.3–5.0 and 5.1–6.3, respectively, for five measurements. The method was also successfully applied for the determination of the pesticides in fruit juice and tap water samples.  相似文献   

4.
A sensitive and selective gas chromatography with mass spectrometry method was developed for the simultaneous determination of three organophosphorus pesticides, namely, chlorpyrifos, malathion, and diazinon in three different food commodities (milk, apples, and drinking water) employing solid‐phase extraction for sample pretreatment. Pesticide extraction from different sample matrices was carried out on Chromabond C18 cartridges using 3.0 mL of methanol and 3.0 mL of a mixture of dichloromethane/acetonitrile (1:1 v/v) as the eluting solvent. Analysis was carried out by gas chromatography coupled with mass spectrometry using selected‐ion monitoring mode. Good linear relationships were obtained in the range of 0.1–50 μg/L for chlorpyrifos, and 0.05–50 μg/L for both malathion and diazinon pesticides. Good repeatability and recoveries were obtained in the range of 78.54–86.73% for three pesticides under the optimized experimental conditions. The limit of detection ranged from 0.02 to 0.03 μg/L, and the limit of quantification ranged from 0.05 to 0.1 μg/L for all three pesticides. Finally, the developed method was successfully applied for the determination of three targeted pesticides in milk, apples, and drinking water samples each in triplicate. No pesticide was found in apple and milk samples, but chlorpyrifos was found in one drinking water sample below the quantification level.  相似文献   

5.
The primary objective of this study was to simultaneously analyze the residues of the most commonly used pesticides, chlorpyrifos-methyl, endosulfan, EPN, and iprodione in the water dropwort, via accelerated solvent extraction (ASE), supercritical fluid extraction (SFE), and conventional solvent extraction (LLE) techniques. Residue levels were determined using GC with electron-capture detection (GC-ECD). The confirmation of pesticide identity was performed by GC-MS in a selected ion-monitoring (SIM) mode. In none of the ASE and SFE techniques were the extraction conditions optimized. Rather, the experimental variables were predicated on the author's experience. The ECD response for all pesticides was linear in the studied range of concentrations of 0.005-5.0 ppm, with correlation coefficients in excess of 0.9991. At each of the two studied fortification levels, the pesticides yielded recoveries in excess of 72% with RSDs between 1 and 19%. The LODs were achieved at a range of levels from 0.001 to 0.063 ppm, depending on the pesticide utilized. The LOQs, which ranged from 0.003 to 0.188 ppm, were lower than the maximum residue limits (MRLs) authorized by the Korean Food and Drug Administration (KFDA). All of the methods were applied successfully to the determination of pesticide residues in the real samples. It could, therefore, be concluded that any of the techniques utilized in this investigation might prove successful, given that the applied extraction conditions are wisely chosen.  相似文献   

6.
Diazinon is an organophosphorus insecticide (OPP) that is used as a pesticide for Chilo suppressalis (WLK) (Lep., Pyralidae) in rice fields. The extraction of diazinon from soil and the stems of rice plants has been carried out by microwave-assisted extraction (MAE) and the results compared with ultrasonic extraction (USE). The best parameters for MAE are hexane-acetone (8:2 v/v) as a solvent, a 2.5 min extraction time, and 20 ml of the solvent volume. Also, surface-water samples of the rice fields were extracted by solid phase extraction (SPE) using a C18 disc. The optimum conditions of SPE were a sample volume of 750 ml, a pH of 7 and high ionic strength of water. The extracted samples were analyzed by gas chromatography-mass spectrometry (GC-MS). The relative standard deviation (RSD) and regression coefficients related to the linearity were <3.5% (n = 5) and 0.99, respectively. The limit of detection (LOD) is 0.1 ng ml(-1) with selected ion monitoring (SIM) at 137 m/z. The average recoveries of diazinon in soil and stem samples by MAE and surface-water by SPE were 98% (+/-3), 94% (+/-5) and 87% (+/-3), respectively. In June, the concentration of diazinon in soil and stem samples of the rice plants in Guilan province is high (55 ng ml(-1)) and in September is low (2 ng ml(-1)). In surface-water samples, the results are converse. In November, diazinon can not be detected in soil, stem or surface-water samples. Diazinon is degraded to diethylthiophosphoric acid. Also, three microorganism genera (Pseudomonas sp, Flavobacterium sp and Agrobacterium sp) have been found to degrade diazinon in soil and surface water.  相似文献   

7.
A systematic study of the microwave-assisted extraction coupled to solid-phase extraction of nine organophosphorus pesticides (dimethoate, diazinon, pirimiphos methyl, parathion methyl, malathion, fenthion, chlorpyriphos, methidathion and azinphos methyl) from olive oil is described. The method is based on microwave-assisted liquid-liquid extraction with partition of organophosphorus pesticides between an acetonitrile-dichloromethane mixture and oil. Cleanup of extracts was performed with ENVI-Carb solid-phase extraction cartridge using dichloromethane as the elution solvent. The determination of pesticides in the final extracts was carried out by gas chromatography-flame photometric detection and gas chromatography-tandem mass spectrometry, using a triple quadrupole mass analyzer, for confirmative purposes. The study and optimization of the method was achieved through experimental design where recovery of compounds using acetonitrile for partition ranged from 62 to 99%. By adding dichloromethane to the extracting solution, the recoveries of more hydrophobic compounds were significantly increased. Under optimized conditions recoveries of pesticides from oil were equal to or higher than 73%, except for fenthion and chlorpyriphos at concentrations higher than 0.06microgg(-1) and diazinon at 0.03microgg(-1), with RSDs equal to or lower than 11% and quantification limits ranging from 0.007 to 0.020microgg(-1). The proposed method was applied to residue determination of the selected pesticides in commercial olive and avocado oil produced in Chile.  相似文献   

8.
Ultrasonic solvent extraction of organochlorine pesticides from soil   总被引:1,自引:0,他引:1  
Ultrasonic solvent extraction of the organochlorine pesticides (OCP) including α-, β-, γ- and Δ-hexachlorocyclohexane (HCH), heptachlor, aldrin, o,p′-DDE, dieldrin, p,p′-DDE, p,p′-DDT, methoxychlor, mirex from soil is reported. The extraction procedure was optimized with regard to the solvent type, amount of solvent, duration of sonication and number of extraction steps. Determination of pesticides was carried out by gas chromatography (GC) equipped with electron capture detection (ECD). Twice ultrasonic extraction using 25 mL of a mixture of petroleum ether and acetone (1/1 v/v) for 20 min of sonication showed satisfactory extraction efficiency. Recoveries of pesticides from fortified soil samples are over 88% for three different fortification levels between 15 and 200 μg kg−1, and relative standard deviations of the recoveries are generally below 6%. Real soil samples were analyzed for OCP residues by optimized ultrasonic solvent extraction and shake-flask as well as soxhlet extraction technique. Investigated all extraction methods showed comparable extraction efficiencies. Optimized ultrasonic solvent extraction is the most rapid procedure because the use of time in ultrasonic extraction was considerably reduced compared to shake-flask and soxhlet extraction.  相似文献   

9.
建立了加速溶剂同步萃取净化-气相色谱-串联质谱(GC-MS/MS)同时测定贝类中64种农药残留的方法。加速溶剂萃取的萃取溶剂为90%(v/v)乙腈水溶液,萃取温度为85℃、冲洗体积60%萃取池体积、循环次数1次,同时使用0.8 g N-丙基乙二胺(PSA)和0.8 g石墨化炭黑(GCB)在线净化,提取液浓缩定容后,在多反应监测(MRM)模式下测定,外标法定量。结果表明,64种农药在10.0~1000 μg/L范围内呈现良好的线性关系,决定系数(r2)均大于0.989,方法的定量限为2.0~10.0 μg/kg;对文蛤空白基质进行加标回收试验,添加水平为5.0、10.0和100 μg/kg以及定量限水平,得到的平均回收率为69.4%~129.7%,精密度为0.7%~16.0%(n=6)。该方法提取和净化同步完成,操作简单,重复性好,灵敏度高,能够满足于贝类水产品中多种农药残留的同时筛查。  相似文献   

10.
利用亚临界水可以定量萃取基质中绝大部分化合物的特点,借助加速溶剂萃取仪(ASE)将亚临界水萃取与固相吸附联用,通过在ASE萃取池中填加C18吸附层的方式改进了萃取吸附模式,优化了萃取温度,研究了亚临界水在萝卜、香瓜、苹果和白菜等蔬果基质中对异稻瘟净等12种农药的萃取效果,用气相色谱-串联质谱法(GC-MS/MS)进行检...  相似文献   

11.
The stability of nine organophosphorus insecticides (azinphos-ethyl, azinphos-methyl, diazinon, EPN, ethion, fonofos, malathion, phosmet and parathion-methyl) was evaluated under a variety of storage conditions. Large volumes of surface water (4 l) were extracted using large-particle-size graphitized carbon black cartridges (Carbopack B 60-80 mesh). The effects of temperature, matrix type and drying of cartridges on the recovery of these contaminants, after different storage periods, were studied and compared to the conservation of surface water in bottles. After a 2-month period, all the chemicals stored on cartridges and kept at -20 degrees C remained stable, with recoveries ranging from 70 to 134%. By contrast, phosmet and EPN could no longer be recovered from the bottled surface water. Cartridges kept at -20 degrees C fared better than did those stored at 4 degrees C and 20 degrees C. The type of matrix water selected appears to have kept the target pesticides stored on cartridges from degrading, compared to the Milli-Q water, in which malathion and phosmet were unstable. The effect of the cartridges being either wet or dry made no difference in terms of improving the recovery of chemicals. After immediate surface water extraction, the most practical storage condition for the target insecticides was found to be storage on cartridges in the dark at -20 degrees C, with no drying or solvent washing of the Carbopack B material.  相似文献   

12.
The extraction of two pyrethroid insecticides (deltamethrin and α-cypermethrin) together with three organophosphorus insecticides (dimethoate, diazinon and malathion) from soil samples was carried out with microwave-assisted technology. Experimental designs showed that extraction temperature, addition of water to the extractant and solvent/soil ratio were the variables that affected the recoveries of the pesticide the most. Response surface methodology was applied to find the optimum values of the variables involved in the extractions of the analytes. In addition, in order to achieve near-optimal extraction conditions, a desirability function was used to optimize the five pesticides simultaneously. The optimized conditions were applied to different types of soils.  相似文献   

13.
建立了一种简便准确的前处理方法用于茶叶中5种有机氯农药和4种拟除虫菊酯类农药的测定。对索氏提取、超声提取、加速溶剂萃取和振荡提取4种提取方法的参数条件进行优化和对比,并对前处理的净化条件进行优化,建立了丙酮-正己烷(7∶3,体积比)溶液振荡提取串联Envi-Carb和LC-AliminaN小柱净化后,经丙酮-正己烷(1∶9)溶液洗脱,浓缩后用GC-MS法测定。茶叶样品中9种农药的加标回收率(n=6)为82%~108%,相对标准偏差为1.2%~4.5%,方法的检出限(以3倍信噪比计)为0.46~12.13ng/g。  相似文献   

14.
Four different extraction and clean-up protocols based on the QuEChERS method were compared for the development of an optimized sample preparation procedure for the multiresidue analysis of 16 commonly applied herbicides in rice crops using LC-QqQ/MS. Additionally the methods were evaluated for the analysis of 26 insecticides and fungicides currently used in rice crops. The methods comprise, in general, the hydratation of the sample with water followed by the extraction with acetonitrile, phase separation with the addition of different salts and finally a clean-up step with various sorbents.Matrix effects were evaluated for the 4 studied methods using LC-QqQ/MS. Additionally LC-TOF/MS was used to compare the co-extractants obtained with the four assayed methodologies. Thirty-six pesticides presented good performance with recoveries in the range 70-120% and relative standard deviations below 20% using 7.5 g of milled polished rice and the buffered acetate QuEChERS method without clean-up at both fortification levels: 10 and 300 μg kg−1. The other six pesticides presented low recovery rates, nevertheless all these analytes could be analyzed with at least one of the other three studied procedures.  相似文献   

15.
微波辅助萃取/气相色谱-质谱联用分析蔬菜中的有机磷农药   总被引:29,自引:0,他引:29  
杨云  张卓旻  李攻科 《色谱》2002,20(5):390-393
建立了微波辅助萃取(MAE)/气相色谱-质谱联用法(GC-MS)测定蔬菜样品中二嗪磷、水胺硫磷的分析方法,研究了不同溶剂的萃取效率。选择二氯甲烷为萃取溶剂,采用二因素三水平的正交设计实验优化了萃取溶剂体积和萃取时间。方法的线性范围分别为二嗪磷和对硫磷4ng/g-400ng/g,水胺硫磷20ng/g-400ng/g,检出限分别为二嗪磷和对硫磷4ng/g-400ng/g、水胺硫磷20ng/g-400ng/g,检出限分别为二嗪磷0.29ng/g、对硫磷1.70ng/g、水胺硫磷2.30ng/g。测定200.0ng/g和50.0ng/g加标蔬菜样品,回收率为72.2%-102.0%,RSD为1.5%-11.0%。与传统的机械振荡萃取法相比,不仅萃取效率相当,而且还具有省时省溶剂的优点。  相似文献   

16.
A simple, environmentally benign, and rapid method based on temperature‐controlled liquid–liquid microextraction using a deep eutectic solvent was developed for the simultaneous extraction/preconcentration of diazinon and fenitrothion. The method involved the addition of deep eutectic solvent to the aqueous sample followed by heating the mixture in a 75°C water bath until the solvent was completely dissolved in the aqueous phase. Then, the resultant solution was cooled in an ice bath and a cloudy solution was formed. Afterward, the mixture was centrifuged and the enriched deep eutectic solvent phase was analyzed by high‐performance liquid chromatography with ultraviolet detection for quantification of the analytes. The factors affecting the extraction efficiency were optimized. Under the optimized extraction conditions, the limits of detection for diazinon and fenitrothion were 0.3 and 0.15 μg/L, respectively. The calibration curves for diazinon and fenitrothion exhibited linearity in the concentration range of 1–100 and 0.5–100 μg/L, respectively. The relative standard deviations for five replicate measurements at 10.0 μg/L level of analytes were less than 2.8 and 4.5% for intra‐ and interday assays, respectively. The developed method was successfully applied to the determination of diazinon and fenitrothion in water and fruit juice samples.  相似文献   

17.
In the present work the efficiency of water under subcritical conditions for the extraction of pesticides having a broad spectrum of polarities from soils was evaluated. The pesticides under study were carbofuran, hexachlorobenzene, dimethoate, simazine, atrazine, lindane, diazinon, methylparathion, alachlor, aldrin-R, metholachlor, chlorpyrifos, heptachlor epoxide, dieldrin, endrin, 4,4-DDT and metoxichlor. Optimization studies were carried out using a blank soil (Non-Polluted Soil 1, CLN-1, RTC) and a real soil which were previously spiked with the pesticide mixture and aged for 60 days. A laboratory-made aluminum oven with controlled temperature was used to carry out the leaching process with subcritical water, where it is placed a pre-heater and the extraction cell. The following variables were studied, keeping the pressure controlled about 1200 p.s.i.: the extraction temperature, the time of static and dynamic extraction and the flow-rate of water (1 p.s.i. = 6894.76 Pa). The extraction efficiency of the pesticides increases with the temperature trending to the quantitative extraction at temperatures near to 300 degrees C. After the extraction process, the analytes were transferred quantitatively to 5 ml dichloromethane, before the determination by GC-MS. The results indicate that under the optimized conditions mostly of the analytes are extracted quantitatively in 90 min with recoveries quite similar to those obtained by the standard Soxhlet extraction procedure. Alternatively, by using an extraction time of 25 min, the method can be used as screening for all the pesticides, with recoveries depending on their polarity.  相似文献   

18.
An analytical procedure based on extraction by accelerated solvent extraction (ASE) followed by gas chromatography–mass spectrometry (GC/MS) analysis has been developed for the determination of particulate polycyclic aromatic hydrocarbons (PAHs) from large-volume water samples (20 L). The effect of temperature and number of cycles on the efficiency of ASE was investigated: the best results were obtained by using a temperature of 100°C and one static cycle. A mixture of hexane/acetone 1:1 (v/v) was used as extraction solvent. Mean total method recovery under optimized conditions was 85%. The developed methodology was applied to the analysis of suspended particulate matter from Lake Maggiore waters (north of Italy). Mean PAH concentrations in suspended particulate matter from Lake Maggiore ranged from 0.2 ng L−1 for anthracene to 18.7 ng L−1 for naphthalene.  相似文献   

19.
Microwave-assisted solvent extraction of persistent organochlorine pesticides (POPs) in marine sediment was developed and optimized by means of two-level factorial designs. Six variables (microwave power, extraction time and temperature, amount of sample, solvent volume, and sample moisture) were considered as factors in the optimization process. The results show that the amount of sample to be extracted and solvent volume are statistically significant for the overall recovery of the studied pesticides, although compromise conditions have to be established with the object of avoiding overpressure in closed vessels. After extraction, a clean up step including the use of a silica cartridge was performed prior to chromatographic determination in order to remove interferences. The optimized procedure was compared to conventional Soxhlet extraction. The MS-MS ion preparation mode was applied to improve the sensitivity and selectivity of the chromatographic technique.  相似文献   

20.
A procedure for the multiresidue determination of organochlorine pesticides and polychlorinated biphenyls in fish muscle samples has been developed. The method is based on the microwave-assisted extraction (MAE) of food samples from an acetonitrile-water (95 + 5, v/v) mixture followed by SPE cleanup of the extracts and analysis by GC with an electron capture detector. MAE operational parameters, such as the extraction solvent, temperature, and time, were optimized with respect to the extraction efficiency of the target compounds from food samples with 10-13% fat content. The chosen extraction technique allows reduction of the solvent consumption and extraction time when compared with methods already used. Acetonitrile is a good extraction solvent for low-fat matrixes (2-20% fat content), such as fish samples, because it does not significantly dissolve the highly polar proteins, salts, and sugars commonly found in food and gives high recoveries of a wide polarity range of analytes. For purification, SPE using LC-Florisil was shown to be sufficient for the removal of coextracted substances. Recoveries > 78% with RSD values < 15% were obtained for all compounds under the selected conditions. Method quantification limits were in the 5-10 microg/kg range. The method was applied to the analysis of samples of herring (Clupea harengus) purchased at the local fish market. The method is rapid and reliable for the determination of organochlorine analytes in fish muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号