首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Field-electron emission from polyimide-ablated films   总被引:1,自引:0,他引:1  
Polyimide-ablated film was deposited by using pulsed laser ablation of a polyimide target, and field-electron emission from the film was observed for the first time. The turn-on field of the polyimide-ablated film is 12 V/μm. The current density is 0.725 mA/cm2, and the emission sites density is on the order of 106/cm2 at the applied field of 24 V/μm. The field-electron emission measurements indicate that this kind of film could be a new cold cathode material. It is suggested that the graphite-like clusters contained in the film play an important role in the field-electron emission. Received: 2 February 2000 / Accepted: 13 March 2000 / Published online: 9 August 2000  相似文献   

2.
Field emission from single-walled carbon nanotubes (SWNTs) aligned on a patterned gold surface is reported. The SWNT emitters were prepared at room temperature by a self-assembly monolayer technique. SWNTs were cut into sub-micron lengths by sonication in an acidic solution. Cut SWNTs were attached to the gold surface by the reaction between the thiol groups and the gold surface. The field-emission measurements showed that the turn-on field was 4.8 V/μm at an emission current density of 10 μA/cm2. The current density was 0.5 mA/cm2 at 6.6 V/μm. This approach provides a novel route for fabricating CNT-based field-emission displays. Received: 3 May 2002 / Accepted: 6 May 2002 / Published online: 4 December 2002 RID="*" ID="*"Corresponding author. Fax: +82-54/279-8298, E-mail: ce20047@postech.ac.kr  相似文献   

3.
The present work describes the field emission characteristics of nanoscale magnetic nanomaterial encapsulated multi-walled carbon nanotubes (MWNTs) fabricated over flexible graphitized carbon cloth. Ni/MWNTs, NiFe/MWNTs and NiFeCo/MWNTs have been synthesized by catalytic chemical vapor decomposition of methane over Mischmetal (Mm)-based AB3 (MmNi3, MmFe1.5Ni1.5 and MmFeCoNi) alloy hydride catalysts. Metal-encapsulated MWNTs exhibited superior field emission performance than pure MWNT-based field emitters over the same substrate. The results indicate that a Ni-filled MWNT field emitter is a promising material for practical field emission application with a lowest turn-on field of 0.6 V/μm and a high emission current density of 0.3 mA/cm2 at 0.9 V/μm.  相似文献   

4.
The direct growth of a tetrapod-like ZnO nanostructure has been accomplished by using a thermal oxidation method without any catalysts. Studies on the field emission properties of the ordered ZnO nanotetrapods films found that the shape of the ZnO nanotetrapods has considerable effect on their field emission properties, especially the turn-on field and the emission current density. Compared with the rod-like legs ZnO nanotetrapods, the nanotetrapods with acicular legs have a lower turn-on field of 2.7 V/μm at a current density of 10 μA/cm2, a high field enhancement factor of 1830, and an available stability. More importantly, the emission current density reached 1 mA/cm2 at a field of 4.8 V/μm without showing saturation. The results could be valuable for using the ZnO nanostructure as a cold-cathode field-emission material.   相似文献   

5.
Single-wall carbon nanotubes (SWNTs) were synthesized by the irradiation of 20-ms CO2 laser pulses onto a graphite–Co/Ni target at room temperature. We investigated the effect of laser power density (10–150 kW/cm2) and ambient Ar gas pressure (150–760 Torr) on the abundance of SWNTs with lengths of up to about 200 nm in soot-like carbonaceous deposits. For a constant power density (30 kW/cm2), depending on the Ar gas pressure, SWNTs with diameters of 1.2–1.4 nm were synthesized. Expansion behavior and temperature-fall rates of clusters and/or particles in laser plumes were also analyzed by high-speed video imaging and temporally and spatially resolved emission spectroscopy. The temperature-fall rates were estimated to be 171–427 K/ms. The SWNT growth on the time scale of a few milliseconds appeared to be related to some features of condensing clusters and/or particles, including resident densities, collision frequencies and temperatures. Received: 16 July 2001 / Accepted: 23 July 2001 / Published online: 30 August 2001  相似文献   

6.
The surface topography, chemical composition, microstructure, nanohardness, and tribological characteristics of a Cu (film, 512 nm)-stainless steel 316 (substrate) system subjected to pulsed melting by a low-energy (20–30 keV), high-current electron beam (2–3 μs, 2–10 J/cm2) were investigated. The film was deposited by sputtering a Cu target in the plasma of a microwave discharge in argon. To prevent local exfoliation of the film due to cratering, the substrate was multiply pre-irradiated with 8–10 J/cm2. On single irradiation, the bulk of the film survived, and a diffusion layer containing the film and substrate components was formed at the interface. The thickness of this layer was 120–170 nm irrespective of the energy density. The diffusion layer consisted of subgrains of γ-Fe solid solution and nanosized particles of copper. In the surface layer of thickness 0.5–1 μm, which included the copper film quenched from melt and the diffusion layer, the nanohardness and the wear resistance nonmonotonicly varied with energy density, reaching, respectively, a maximum and a minimum in the range 4.3–6.3 J/cm2. As the number of pulsed melting cycles was increased to five in the same energy density range, there occurred mixing of the film-substrate system and a surface layer of thickness ∼2 μm was formed which contained ∼20 at. % copper. Displacement of the excess copper during crystallization resulted in the formation of two-phase nanocrystal interlayers separating the γ-phase grains. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 12, pp. 6–13, December, 2005.  相似文献   

7.
Highly conductive and transparent indium tin oxide (ITO) thin films, each with a thickness of 100 nm, were deposited on glass and Si(100) by direct current (DC) magnetron sputtering under an argon (Ar) atmosphere using an ITO target composed of 95% indium oxide and 5% tin oxide for photon-STM use. X-ray diffraction, STM observations, resistivity and transmission measurements were carried out to study the formation of the films at substrate temperatures between 40 and 400 °C and the effects of thermal annealing in air between 200 and 400 °C for between1 and 5 h. The film properties were highly dependent on deposition conditions and on post-deposition film treatment. The films deposited under an Ar atmosphere pressure of ∼1.7×10-3 Torr by DC power sputtering (100 W) at substrate temperatures between 40 and 400 °C exhibited resistivities in the range 3.0–5.7×10-5 Ω m and transmissions in the range 71–79%. After deposition and annealing in air at 300 °C for 1 h, the films showed resistivities in the range 2.9–4.0×10-5 Ω m and transmissions in the range 78–81%. Resistivity and transmission measurements showed that in order to improve conductive and transparent properties, 2 h annealing in air at 300 °C was necessary. X-ray diffraction data supported the experimental measurements of resistivity and transmission on the studies of annealing time. The surface roughness and film uniformity improve with increasing substrate temperature. STM observations found the ITO films deposited at a substrate temperature of 325 °C, and up to 400 °C, had domains with crystalline structures. After deposition and annealing in air at 300 °C for 1 h the films still exhibited similar domains. However, after deposition at substrate temperatures from 40 °C to 300 °C, and annealing in air at 300 °C for 1 h, the films were shown to be amorphous. More importantly, the STM studies found that the ITO film surfaces were most likely to break after deposition at a substrate temperature of 325 °C and annealing in air at 300 °C for 2 or 3 h. Such findings give some inspiration to us in interpreting the effects of annealing on the improvement of conductive and transparent properties and on the transition of phases. In addition, correlations between the conductive/transparent properties and the phase transition, the annealing time and the phase transition, and the conductive/transparent properties and the annealing time have been investigated. Received: 10 July 2000 / Accepted: 27 October 2000 / Published online: 9 February 2001  相似文献   

8.
If mesoporous thin films (MTFs) are to be utilised in device applications it is important that we produce films which not only possess a single pore direction across large substrate areas (in the range of microns) but are also relatively defect free. In this paper we report the use of confining architectures in the form of topographically patterned rectangular section channels etched into native silicon substrates to promote ordering of the mesopores. We discuss the effects of the channels on films with different thicknesses. The film thickness is shown to be a critical parameter in defining highly orientated and defect-free films and the data demonstrate that it is possible to achieve a single mesoporous silica domain across macroscopic dimensions with thin film thicknesses of approximately 200 nm but that critically pore order can be lost in ultra thin and thicker films produced by these methods.  相似文献   

9.
A simple geometrical model is applied to predict the thickness of mesoporous shells over monodisperse spherical particles. As an example, mesoporous Ti-silicate nearly monodisperse particles with the “core-shell” structure, synthesized via the one-pot procedure are considered. The unique features of the materials are orientation of mesopores perpendicularly to the surface of non-porous cores and uniformity of mesoporous shells structure and thickness. This allows considering these materials as interesting catalysts for partial oxidation of bulk organic molecules with hydrogen peroxide.  相似文献   

10.
Bi3TiNbO9:Er3+:Yb3+ (BTNEY) thin films were fabricated on fused silica by pulsed laser deposition. It was demonstrated that different laser fluence and substrate temperature during growth of BTNEY upconversion photoluminescence (UC-PL) samples control the film’s grain size and hence influences the UC-PL properties. The average grain size of BTNEY thin films deposited on fused silica substrates with laser fluence 4, 5, 6, and 7 J/cm2 are 30.8, 35.9, 40.6, and 43.4 nm, respectively. The 525 nm emission intensities increase with the deposition laser fluence and the emission intensities of BTNEY thin film deposited under 700 and 600 °C are almost 24 and 4 times, respectively, as strong as those of samples under 500 °C. The grain size of BTNEY thin film increases with the increasing temperature. UC-PL of BTNEY films is enhanced by increasing grain size of the films.  相似文献   

11.
Nanocrystalline ZnO thin films have been deposited on rhenium and tungsten pointed and flat substrates by pulsed laser deposition method. An emission current of 1 nA with an onset voltage of 120 V was observed repeatedly and maximum current density ∼1.3 A/cm2 and 9.3 mA/cm2 has been drawn from ZnO/Re and ZnO/W pointed emitters at an applied voltage of 12.8 and 14 kV, respectively. In case of planar emitters (ZnO deposited on flat substrates), the onset field required to draw 1 nA emission current is observed to be 0.87 and 1.2 V/μm for ZnO/Re and ZnO/W planar emitters, respectively. The Fowler–Nordheim plots of both the emitters show nonlinear behaviour, typical for a semiconducting field emitter. The field enhancement factor β is estimated to be ∼2.15×105 cm−1 and 2.16×105 cm−1 for pointed and 3.2×104 and 1.74×104 for planar ZnO/Re and ZnO/W emitters, respectively. The high value of β factor suggests that the emission is from the nanometric features of the emitter surface. The emission current–time plots exhibit good stability of emission current over a period of more than three hours. The post field emission surface morphology studies show no significant deterioration of the emitter surface indicating that the ZnO thin film has a very strong adherence to both the substrates and exhibits a remarkable structural stability against high-field-induced mechanical stresses and ion bombardment. The results reveal that PLD offers unprecedented advantages in fabricating the ZnO field emitters for practical applications in field-emission-based electron sources.  相似文献   

12.
We have observed low-macroscopic field electron emission from wide bandgap nanocrystalline Al doped SnO2 thin films deposited on glass substrates. The emission properties have been studied for different anode-sample spacings and for different Al concentrations in the films. The turn-on field and approximate work function were calculated and we have tried to explain the emission mechanism from this. The turn-on field was found to vary in the range 5.6–7.5 V/μm for a variation of anode sample spacing from 80–120 μm. The turn-on field was also found to vary from 4.6–5.68 V/μm for a fixed anode-sample separation of 80 μm with a variation of Al concentration in the films 8.16–2.31%. The Al concentrations in the films have been measured by energy dispersive X-ray analysis. Optical transmittance measurement of the films showed a high transparency with a direct bandgap ∼3.98 eV. Due to the wide bandgap, the electron affinity of the film decreased. This, along with the nanocrystalline nature of the films, enhanced the field emission properties. PACS 81.20.Fw; 61.10.-i; 79.70.+q  相似文献   

13.
Co-Al-N films with different compositions were deposited by a two-facing target magnetron sputtering method for use as precursor films in the fabrication of magnetoresistive Co-AlN granular films by post-deposition annealing. It is found that the nitrogen flow ratio during sputtering deposition strongly affects the magnetic and electrical properties of Co-AlN films. In the present work, there is an optimum nitrogen flow ratio at which maximum saturation magnetizations and MR ratio (4.6%) are obtained for the annealed film. Such a film also has very high resistivity, of the order of 107 μΩ cm. Another important feature of the film is that both Co and AlN are in a crystalline state, which may confer better thermal ability compared with granular films having amorphous matrix. PACS 73.43.Qt; 45.70.-n; 73.63.Bd  相似文献   

14.
The cobalt film was successfully coated on the cenosphere particles using heterogeneous precipitation thermal reduction method. The morphology and microstructure of the products were analyzed by field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). FE-SEM results implied that the Co film was relatively uniform and compact. XRD results indicated that the Co film coated on cenospheres was a face-centered cubic structure (fcc) and the crystallite size of Co particles was about 24.5 nm. The magnetic property of Co/cenosphere composites was measured by vibrating sample magnetometer (VSM), and the results showed that the Co/cenosphere composites were of the weak soft magnetic property at room temperature, the Ms and Hc value was 18.2 Am2 kg−1 and 28.4 kA m−1, respectively.  相似文献   

15.
The field emission properties of multi-walled carbon nanotubes were examined using a screen-printed thick film with a diode-type configuration in a vacuum. The effects of various concentrations of two different ceramic fillers, indium tin oxide (ITO) powder and a glass frit, on the emission current density and turn-on field were evaluated. The emission properties of both pastes were dependent on the amount of filler. Considerably enhanced emission properties were obtained with the paste containing 5–10 wt.% of either ITO or the glass frit compared with those without a filler. The paste containing the ceramic filler showed enhanced emission properties compared with that containing the 5 wt.% Ag conventionally used, which confirmed the importance of the filler. The paste containing 10 wt.% ITO represented an emission current density of 176.4 μA/cm2 at 5 V/μA, a turn-on field of 1.87 V/μA for an emission current density of 1 μA/cm2 and a field enhancement factor of 7580. The paste formulation was also found to be suitable for fine patterning using UV-lithography techniques. A long-term stability test for 110 h of a paste containing 10 wt.% ITO revealed a half-life of approximately 30000 h, which is appropriate for commercial applications.  相似文献   

16.
The interactions of muonium (μ + e , Mu) with the surfaces of fine silica powders have been extensively studied using zero, longitudinal and transverse field μSR techniques. These studies indicate diffusion and trapping behavior of the Mu atoms on the silica surface, which is strongly influenced by the surface hydroxyl (OH) concentration. Specifically, the presence of the surface OH groups is observed to inhibit the surface mobility of the Mu atoms at low temperatures. Information provided by zero and longitudinal field data suggest a random anisotropic distortion of the Mu hyperfine interaction (RAHD) as the principal relaxation mechanism. A recently developed RAHD spin relaxation theory is used to interpret these data. Additional investigations, using platinum loaded silica, have yielded the first observed surface reaction of Mu. Studies of the interactions of positive muons with surfaces have been also extended to single crystals, where low energy (<10 eV)μ + andMu ions are observed to be reemitted from some materials (e.g., the <100> surface of lithium fluoride). Future applications of these emission phenomena toward the development of a slow847-3 (or Mu) beam are considered.  相似文献   

17.
High-density and uniformly aligned tungsten oxide nanotip arrays have been deposited by a conventional thermal evaporation on ITO glass substrates without any catalysts or additives. The temperature of substrate was 450-500 °C. It was shown that the tungsten oxide nanotips are single-crystal grown along [0 1 0] direction. For commercial applications, field emission of the tungsten oxide nanotip arrays was characterized in a poor vacuum at room temperature. The field emission behaviors are in agreement with Fowler-Nordheim theory. The turn-on field is 2.8 V μm−1 as d is 0.3 mm. The excellent field emission performances indicated that the tungsten oxide nanotip arrays grown by the present approach are a good candidate for application in vacuum microelectronic devices.  相似文献   

18.
Single-walled carbon nanotubes (SWNTs) were synthesized using size-controlled catalyst nanoparticles created by the pulsed laser ablation method. Specifically, the alloy particles (Co/Mo or Co/Pt) were prepared by ablation of the target alloy materials in an inert gas atmosphere. Size selection was performed using a differential mobility analyzer (DMA). The obtained nanoparticles were deposited on a quartz substrate from which SWNTs were grown by the alcohol catalytic CVD (ACCVD) technique that was developed by the authors group. AFM and Raman scattering analysis revealed that SWNTs were successfully synthesized. It seems the Co/Mo alloy catalyst was more effective for the synthesis of SWNTs than the Co/Pt catalyst, though this is a preliminary result to be further investigated. PACS 36.40.-c; 61.46.+w; 65.80.+n; 78.30.Na; 81.07.de  相似文献   

19.
Diamond nanocone, graphitic nanocone, and mixed diamond and graphitic nanocone films have been synthesized through plasma enhanced hot filament chemical vapor deposition (HFCVD). The field emission properties of these films have been experimentally investigated. The studies have revealed that all three kinds of nanocone films have excellent field electron emission (FEE) properties including low turn-on electric field and large emission current at low electric field. Compared with the diamond nanocone films (emission current of 86 μA at 26 V/μm with the turn-on field of 10 V/μm), the graphitic nanocone films exhibit higher FEE current of 1.8×102 μA at 13 V/μm and a lower turn-on filed of 4 V/μm. The mixed diamond and graphitic nanocone films have been found to posses FEE properties similar to graphitic nanocone films (emission current of 1.7×102 μA at 20 V/μm with the turn-on field of 5 V/μm), but have much better FEE stability than the graphitic nanocone films. PACS 81.07.Bc; 81.05.Uw; 79.70.+q  相似文献   

20.
Pt particles in a uniform dispersion were successfully synthesized on single-site photocatalyst (Ti-containing mesoporous silica (Ti-HMS)) under UV-light irradiation by a photo-assisted deposition (PAD) method. Using an aqueous solution of H2PtCl6 as a precursor, the nano-sized Pt metal particles were deposited directly on the photo-excited tetrahedrally coordinated titanium oxide moieties within the framework of mesoporous silica (PAD-Pt/Ti-HMS). The Pt catalysts were characterized by means of XRD, Pt LIII-edge XAFS, CO adsorption, and TEM analysis. It was demonstrated that Pt particles had mean diameter of 4 nm in a narrow size distribution. Meanwhile, Pt particles loaded by a conventional impregnation method (imp-Pt/Ti-HMS) showed a wide size distribution ranging from 2 to 30 nm. The PAD-Pt/Ti-HMS catalyst was more active in the CO oxidation than the conventional impregnated imp-Pt/Ti-HMS catalyst. It is suggested that the PAD method using single-site photocatalyst is a useful and unique technique to prepare fine and uniform Pt nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号