首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Across-frequency processing by common interaural time delay (ITD) in spatial unmasking was investigated by measuring speech reception thresholds (SRTs) for high- and low-frequency bands of target speech presented against concurrent speech or a noise masker. Experiment 1 indicated that presenting one of these target bands with an ITD of +500 micros and the other with zero ITD (like the masker) provided some release from masking, but full binaural advantage was only measured when both target bands were given an ITD of + 500 micros. Experiment 2 showed that full binaural advantage could also be achieved when the high- and low-frequency bands were presented with ITDs of equal but opposite magnitude (+/- 500 micros). In experiment 3, the masker was also split into high- and low-frequency bands with ITDs of equal but opposite magnitude (+/-500 micros). The ITD of the low-frequency target band matched that of the high-frequency masking band and vice versa. SRTs indicated that, as long as the target and masker differed in ITD within each frequency band, full binaural advantage could be achieved. These results suggest that the mechanism underlying spatial unmasking exploits differences in ITD independently within each frequency channel.  相似文献   

2.
Thresholds of ongoing interaural time difference (ITD) were obtained from normal-hearing and hearing-impaired listeners who had high-frequency, sensorineural hearing loss. Several stimuli (a 500-Hz sinusoid, a narrow-band noise centered at 500 Hz, a sinusoidally amplitude-modulated 4000-Hz tone, and a narrow-band noise centered at 4000 Hz) and two criteria [equal sound-pressure level (Eq SPL) and equal sensation level (Eq SL)] for determining the level of stimuli presented to each listener were employed. The ITD thresholds and slopes of the psychometric functions were elevated for hearing-impaired listeners for the two high-frequency stimuli in comparison to: the listener's own low-frequency thresholds; and data obtained from normal-hearing listeners for stimuli presented with Eq SPL interaurally. The two groups of listeners required similar ITDs to reach threshold when stimuli were presented at Eq SLs to each ear. For low-frequency stimuli, the ITD thresholds of the hearing-impaired listener were generally slightly greater than those obtained from the normal-hearing listeners. Whether these stimuli were presented at either Eq SPL or Eq SL did not differentially affect the ITD thresholds across groups.  相似文献   

3.
Listeners' ability to discriminate interaural time difference (ITD) changes in low-frequency noise was determined as a function of differences in the noise spectra delivered to each ear. An ITD was applied to Gaussian noise, which was bandpass filtered using identical high-pass, but different low-pass cutoff frequencies across ears. Thus, one frequency region was dichotic, and a higher-frequency region monotic. ITD thresholds increased as bandwidth to one ear (i.e., monotic bandwidth) increased, despite the fact that the region of interaural spectral overlap remained constant. Results suggest that listeners can process ITD differences when the spectra at two ears are moderately different.  相似文献   

4.
Users of bilateral cochlear implants and a cochlear implant combined with a contralateral hearing aid are sensitive to interaural time differences (ITDs). The way cochlear implant speech processors work and differences between modalities may result in interaural differences in shape of the temporal envelope presented to the binaural system. The effect of interaural differences in envelope shape on ITD sensitivity was investigated with normal-hearing listeners using a 4?kHz pure tone modulated with a periodic envelope with a trapezoid shape in each cycle. In one ear the onset segment of the trapezoid was transformed by a power function. No effect on the just noticeable difference in ITD was found with an interaural difference in envelope shape, but the ITD for a centered percept was significantly different across envelope shape conditions.  相似文献   

5.
Three experiments were carried out that employed low-frequency tone complexes with interaural delays that varied across the frequency domain. In the first experiment, threshold interaural delays were measured for three-tone complexes for which one, two, or all three components were delayed. The center frequency was 750 Hz and the frequency spacing (delta f) between components was 20, 50, 100, 250, or 450 Hz. For all delta f's, the presence of two diotic components elevated the threshold interaural delays obtained for the third component relative to that obtained for a pure tone of the same frequency. In the second experiment, observers made left-right judgments regarding the direction of movement of signals for which two components were delayed by 25 microseconds to the left ear during one interval and to the right ear during the other interval, while a third component of a variable time difference was delayed to the opposite side as the tone pair. Subjects reported single intracranial images during each interval, and the data showed that interaural delays of one component to one ear could be offset by interaural delays of the other two components to the other ear. In the final experiment, threshold interaural delays were measured for five-tone complexes in which one, two, three, four, or five components were delayed. The center frequency was 750 Hz and delta f was fixed at 100 Hz. Thresholds decreased in a linear fashion as the number of delayed components increased, falling by about a factor of 5 as the number of delayed components went from one to five. These results are consistent with spectrally synthetic binaural processing, with the lateral position of intracranial images determined by a combination of interaural information across the spectrum. These effects could be brought about by a linear combination of the outputs of frequency-specific cross-correlation networks or by a wideband cross correlation of the signals at the two ears.  相似文献   

6.
This study investigates whether binaural signal detection is improved by the listener's previous knowledge about the interaural phase relations of masker and test signal. Binaural masked thresholds were measured for a 500-ms dichotic noise masker that had an interaural phase difference of 0 below 500 Hz and of pi above 500 Hz. The thresholds for two difference 20-ms test signals were determined within the same measurement using an interleaved adaptive 3-interval forced-choice (3IFC) procedure. In each 3IFC trial, both signals could occur with equal probability (uncertainty). The two signals differed in frequency and interaural phase in such a way that one signal always had a frequency above the masker edge frequency (500 Hz) and no interaural phase difference (So), whereas the other signal frequency was below 500 Hz and the interaural phase difference was pi (S pi). The frequencies of a signal pair remained fixed during the whole 3IFC track. These two signals thus lead to two different binaural conditions, i.e., NoS pi for the low-frequency signal and N pi So for the high-frequency signal. For comparison, binaural masked thresholds were measured with the same masker for fixed signal frequency and phase. The binaural masking level differences (BMLDs) resulting from the two experimental conditions show no significant difference. This indicates that the binaural system is able to apply different internal transformations or processing strategies simultaneously in different critical bands and even within the same critical band.  相似文献   

7.
Experiments were conducted with a single, bilateral cochlear implant user to examine interaural level and time-delay cues that putatively underlie the design and efficacy of bilateral implant systems. The subject's two implants were of different types but custom equipment allowed presentation of controlled bilateral stimuli, particularly those with specified interaural time difference (ITD) and interaural level difference (ILD) cues. A lateralization task was used to measure the effect of these cues on the perceived location of the sensations elicited. For trains of fixed-amplitude, biphasic current pulses at 100 pps, the subject demonstrated sensitivity to an ITD of 300 micros, providing evidence of access to binaural information. The choice of bilateral electrode pair greatly influenced ITD sensitivity, suggesting that electrode pairings are likely to be an important consideration in the effort to provide binaural advantages. The selection of bilateral electrode pairs showing sensitivity to ITD was partially aided by comparisons of the pitch elicited by individual electrodes in each ear (when stimulated alone with fixed-amplitude current pulses at 813 pps): specifically, interaural electrodes with similar pitches were more likely (but not certain) to show ITD sensitivity. Significant changes in lateral position occurred with specific electrode pairs. With five bilateral electrode pairs of 14 tested, ITDs of 300 and 600 micros moved an auditory image significantly from right to left. With these same pairs, ILD changes of approximately 11% of the dynamic range (in microApp) moved an auditory image from the far left to the far right-significantly farther than the nine pairs not showing significant ITD sensitivity. However, even these nine pairs did show response changes as a function of the interaural (or confounding monaural) level cue. Overall, insofar as the access to bilateral cues demonstrated herein generalizes to other subjects, it provides hope that the normal binaural advantages for speech recognition and sound localization can be made available to bilateral implant users.  相似文献   

8.
The effect of onset interaural time differences (ITDs) on lateralization and detection was investigated for broadband pulse trains 250 ms long with a binaural fundamental frequency of 250 Hz. Within each train, ITDs of successive binaural pulse pairs alternated between two of three values (0 micros, 500 micros left-leading, and 500 micros right-leading) or were invariant. For the alternating conditions, the experimental manipulation was the choice of which of two ITDs was presented first (i.e., at stimulus onset). Lateralization, which was estimated using a broadband noise pointer with a listener adjustable interaural delay, was determined largely by the onset ITD. However, detection thresholds for the signals in left-leading or diotic continuous broadband noise were not affected by where the signals were lateralized. A quantitative analysis suggested that binaural masked thresholds for the pulse trains were well accounted for by the level and phase of harmonic components at 500 and 750 Hz. Detection thresholds obtained for brief stimuli (two binaural pulse or noise burst pairs) were also independent of which of two ITDs was presented first. The control of lateralization by onset cues appears to be based on mechanisms not essential for binaural detection.  相似文献   

9.
Just-noticeable differences (jnds) of both interaural time delay (ITD) and interaural intensity difference (IID) were measured for binaural tones in the presence of broadband maskers. The tones were presented at 50 dB SPL, the target frequency was 500 Hz, and the masker frequency was 100-1000 Hz, with various combinations of ITD and IID. The time and amplitude jnds exhibit similar dependencies on target-to-masker ratio and masker type. At a given target-to-masker ratio, discrimination was generally best in the presence of diotic maskers and worst in the presence of the interaurally out-of-phase maskers. Results for the other masker types examined tended to fall in between these two extremes. Many of these data trends are consistent with predictions of the lateralization model and the position-variable model based on auditory-nerve activity.  相似文献   

10.
Binaural recordings of noise in rooms were used to determine the relationship between binaural coherence and the effectiveness of the interaural time difference (ITD) as a cue for human sound localization. Experiments showed a strong, monotonic relationship between the coherence and a listener's ability to discriminate values of ITD. The relationship was found to be independent of other, widely varying acoustical properties of the rooms. However, the relationship varied dramatically with noise band center frequency. The ability to discriminate small ITD changes was greatest for a mid-frequency band. To achieve sensitivity comparable to mid-band, the binaural coherence had to be much larger at high frequency, where waveform ITD cues are imperceptible, and also at low frequency, where the binaural coherence in a room is necessarily large. Rivalry experiments with opposing interaural level differences (ILDs) found that the trading ratio between ITD and ILD increasingly favored the ILD as coherence decreased, suggesting that the perceptual weight of the ITD is decreased by increased reflections in rooms.  相似文献   

11.
Several types of interaural delay can affect the lateral position of binaural signals. Delays can occur within the gating (onset and/or offset) or ongoing portions of the signal, or both. Extent of laterality produced by each of these delays was measured for low-frequency tones with an acoustic pointing task. Relative potency was assessed by presenting the delays singly or in combinations (where the types of delay were consistent or in opposition). Rise/decay time, duration, and frequency of the tonal targets were also varied. The major finding was that ongoing delays were much more potent than gating delays in determining extent of laterality. Gating delays were most effective when the interaural phase of the ongoing portion of the tones was more or less ambiguous with respect to which ear was leading. Many of our findings are qualitatively well described by considering properties of patterns of activity produced within a cross-correlation network by such interaurally delayed signals.  相似文献   

12.
A study was made of the effect of interaural time delay (ITD) and acoustic headshadow on binaural speech intelligibility in noise. A free-field condition was simulated by presenting recordings, made with a KEMAR manikin in an anechoic room, through earphones. Recordings were made of speech, reproduced in front of the manikin, and of noise, emanating from seven angles in the azimuthal plane, ranging from 0 degree (frontal) to 180 degrees in steps of 30 degrees. From this noise, two signals were derived, one containing only ITD, the other containing only interaural level differences (ILD) due to headshadow. Using this material, speech reception thresholds (SRT) for sentences in noise were determined for a group of normal-hearing subjects. Results show that (1) for noise azimuths between 30 degrees and 150 degrees, the gain due to ITD lies between 3.9 and 5.1 dB, while the gain due to ILD ranges from 3.5 to 7.8 dB, and (2) ILD decreases the effectiveness of binaural unmasking due to ITD (on the average, the threshold shift drops from 4.6 to 2.6 dB). In a second experiment, also conducted with normal-hearing subjects, similar stimuli were used, but now presented monaurally or with an overall 20-dB attenuation in one channel, in order to simulate hearing loss. In addition, SRTs were determined for noise with fixed ITDs, for comparison with the results obtained with head-induced (frequency dependent) ITDs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
钟小丽  谢菠荪 《声学学报》2013,38(4):477-485
基于空间球谐函数展开,提出了一种空间方向连续的个性化双耳时间差(ITD)模型,并导出了ITD测量的空间采样理论。52名受试者的计算结果表明,本文模型所包含的前六阶球谐展开项可充分表征ITD的空间变化特性,包括左右对称和前后不对称。利用39个空间方向的ITD测量值可准确重构空间方向连续的个性化ITD函数,而利用头部和耳部的四个生理参数的测量值,也可近似预测空间方向连续的个性化ITD函数。本文模型的结构和精度均优于现有的同类模型,可应用于个性化ITD的简化测量以及生理参数定制。   相似文献   

14.
张宏  丁炯  童勤业  程千流 《物理学报》2015,64(18):188701-188701
神经信息系统实质上是定量系统, 应引起足够重视. 关于神经系统的定量研究方面的报道比较少见. 这一问题将会影响进一步的研究, 如双耳声音定向. 双耳定向是定量测量, 用定性分析的方法无法满足要求. 已有的生理实验发现声音输入信号强度与听觉神经的输出频率存在单调递增关系, 所以本文中声音强度的变化被简化成神经脉冲频率的变化. 本文基于圆映射和符号动力学原理, 建立了神经回路定量模型, 模型中对同侧输入回路采用兴奋性耦合, 对侧输入回路采用抑制性耦合, 并考虑神经元间突触连接的量子释放特征, 采用化学耦合模型实现连接, 用耦合系数表示神经元间的耦合程度. 采用Hodgkin-Huxley模型仿真研究听觉神经回路的输入/输出脉冲序列关系. 在已经仿真过的参数范围, 模型在输入信号变化与输出脉冲频率变化间存在单调递增/递减的关系. 对于单输入单输出的神经元, 采用符号动力学方法进行符号化; 对于多输入单输出的神经元, 采用分析各输出脉冲的产生时间, 判断其变化位置, 从神经脉冲序列中得到对应的两耳声音幅值差变化, 以此定位声源. 随着输出脉冲数的增加, 符号序列的长度增加, 符号序列对输入信号变化敏感, 能够得到较高的测量精度. 仿真结果表明这个模型是定量的, 神经脉冲序列能够区分信号的大小.  相似文献   

15.
Two experiments examined the relationship between temporal pitch (and, more generally, rate) perception and auditory lateralization. Both used dichotic pulse trains that were filtered into the same high (3,900-5,400-Hz) frequency region in order to eliminate place-of-excitation cues. In experiment 1, a 1-s periodic pulse train of rate Fr was presented to one ear, and a pulse train of rate 2Fr was presented to the other. In the "synchronous" condition, every other pulse in the 2Fr train was simultaneous with a pulse in the opposite ear. In each trial, subjects concentrated on one of the two binaural images produced by this mixture: they matched its perceived location by adjusting the interaural level difference (ILD) of a bandpass noise, and its rate/pitch was then matched by adjusting the rate of a regular pulse train. The results showed that at low Fr (e.g., 2 Hz), subjects heard two pulse trains of rate Fr, one in the "higher rate" ear, and one in the middle of the head. At higher Fr (>25 Hz) subjects heard two pulse trains on opposite sides of the midline, with the image on the higher rate side having a higher pitch than that on the "lower rate" side. The results were compared to those in a control condition, in which the pulses in the two ears were asynchronous. This comparison revealed a duplex region at Fr > 25 Hz, where across-ear synchrony still affected the perceived locations of the pulse trains, but did not affect their pitches. Experiment 2 used a 1.4-s 200-Hz dichotic pulse train, whose first 0.7 s contained a constant interaural time difference (ITD), after which the sign of the ITD alternated between subsequent pulses. Subjects matched the location and then the pitch of the "new" sound that started halfway through the pulse train. The matched location became more lateralized with increasing ITD, but subjects always matched a pitch near 200 Hz, even though the rate of pulses sharing the new ITD was only 100 Hz. It is concluded from both experiments that temporal pitch perception is not driven by the output of binaural mechanisms.  相似文献   

16.
In a previous paper (Arnold and Burkard, 1998) a dichotic f2-f1 difference tone (DT) auditory evoked potential from the chinchilla inferior colliculus (IC) was measured while presenting f1 (2000 Hz) to one ear and f2 (2100 Hz) to the other ear. This measurement paradigm could be used as a means to study binaural processing in an unanesthetized animal model. However, it is possible that this response is actually generated peripherally, as a result of acoustic crossover. The purpose of the present set of experiments was to investigate whether the dichotic DT is a true binaural phenomenon. Recordings were made from chronically implanted IC electrodes in unanesthetized, monaural chinchillas (left cochlea destroyed). In experiment 1, interaural attenuation (IA) was measured in two ways. First, IA was measured by comparing IC evoked potential thresholds obtained when stimulating the normal right ear and the dead left ear, using tone bursts (0.5-8 kHz). Mean values of interaural attenuation ranged from 50-65 dB across frequency (55 dB at 2000 Hz). Next, the DT was measured monaurally using f1 = 2000 and f2 = 2100 (L1 = L2). By comparing the mean DT input/output functions for monaural stimulation of the right and left ears, a mean value of IA for the tonal pair was estimated (approximately 69 dB). In experiment 2, the DT was measured with right monaural stimulation, while varying the relative levels of the primaries. A small DT could be seen with primary levels up to 30 dB apart, but not for greater level differences. Differences substantially greater than 30 dB would be expected in the crossover situation based upon IA. In experiment 3, the stimuli were presented dichotically (f1 to right ear, f2 to left ear and vice versa, L1 = L2) to determine whether acoustic crosstalk to the normal right ear would generate a DT. No DT was reliably observed in this condition. Taken together, these results suggest that the dichotic DT is a true binaural phenomenon, and not simply attributable to acoustic crossover.  相似文献   

17.
The binaural interaction component (BIC=sum of monaural-true binaural) of the auditory brainstem response appears to reflect central binaural fusion/lateralization processes. Auditory middle-latency responses (AMLRs) are more robust and may reflect more completely such binaural processing. The AMLR also demonstrates such binaural interaction. The fusion of dichotically presented tones with an interaural frequency difference (IFD) offers another test of the extent to which electrophysiological and psychoacoustical measures agree. The effect of IFDs on both the BIC of the AMLR and a psychoacoustical measure of binaural fusion thus were examined. The perception of 20-ms tone bursts at/near 500 Hz with increasing IFDs showed, first, a deviated sound image from the center of the head, followed by clearly separate pitch percepts in each ear. Thresholds of detection of sound deviation and separation (i.e., nonfusion) were found to be 57 and 209 Hz, respectively. However, magnitudes of BICs of the AMLR were found to remain nearly. constant for IFDs up to the 400-Hz (limit of range tested), suggesting that the AMLR-BIC does not provide an objective index of this aspect of binaural processing, at least not under the conditions examined. The nature of lateralization due to IFDs and the concept of critical bands for binaural fusion are also discussed. Further research appears warranted to investigate the significance of the lack of effect of IFDs on the AMLR-BIC. Finally, the IFD paradigm itself would seem useful in that it permits determination of the limit for nonfusion of sounds presented binaurally, a limit not accessible via more conventional paradigms involving interaural time, phase, or intensity differences.  相似文献   

18.
Sensitivity to binaural timing in bilateral cochlear implant users   总被引:2,自引:0,他引:2  
Various measures of binaural timing sensitivity were made in three bilateral cochlear implant users, who had demonstrated moderate-to-good interaural time delay (ITD) sensitivity at 100 pulses-per-second (pps). Overall, ITD thresholds increased at higher pulse rates, lower levels, and shorter durations, although intersubject differences were evident. Monaural rate-discrimination thresholds, using the same stimulation parameters, showed more substantial elevation than ITDs with increased rate. ITD sensitivity with 6000 pps stimuli, amplitude-modulated at 100 Hz, was similar to that with unmodulated pulse trains at 100 pps, but at 200 and 300 Hz performance was poorer than with unmodulated signals. Measures of sensitivity to binaural beats with unmodulated pulse-trains showed that all three subjects could use time-varying ITD cues at 100 pps, but not 300 pps, even though static ITD sensitivity was relatively unaffected over that range. The difference between static and dynamic ITD thresholds is discussed in terms of relative contributions from initial and later arriving cues, which was further examined in an experiment using two-pulse stimuli as a function of interpulse separation. In agreement with the binaural-beat data, findings from that experiment showed poor discrimination of ITDs on the second pulse when the interval between pulses was reduced to a few milliseconds.  相似文献   

19.
Psychometric functions were measured for the discrimination of the interaural phase difference (IPD) of the envelope of a sinusoidally amplitude-modulated (SAM) 4-kHz pure tone for modulation frequencies of 128 and 300 Hz and modulation depths (m) of 0.2, 0.6, 0.9, and 1.0. Contrary to recent modeling assumptions, it was found that a constant change in normalized interaural envelope correlation, with or without additional model stages to simulate peripheral auditory processing, did not produce a constant level of performance. Rather, in some cases, performance could range from chance to near perfect across modulation depths for a given change in normalized interaural envelope correlation. This was also true for the maximum change in normalized interaural envelope correlation computed across the cross-correlation functions for the stimuli to be discriminated. The change in the interaural time difference (ITD) computed from the IPD accounted for discriminability across modulation depths better than the change in normalized interaural envelope correlation, although ITD could not account for all the data, particularly those for lower values of m.  相似文献   

20.
The equalization stage in the equalization-cancellation model of binaural unmasking compensates for the interaural time delay (ITD) of a masking noise by introducing an opposite, internal delay [N. I. Durlach, in Foundations of Modern Auditory Theory, Vol. II., edited by J. V. Tobias (Academic, New York, 1972)]. Culling and Summerfield [J. Acoust. Soc. Am. 98, 785-797 (1995)] developed a multi-channel version of this model in which equalization was "free" to use the optimal delay in each channel. Two experiments were conducted to test if equalization was indeed free or if it was "restricted" to the same delay in all channels. One experiment measured binaural detection thresholds, using an adaptive procedure, for 1-, 5-, or 17-component tones against a broadband masking noise, in three binaural configurations (N0S180, N180S0, and N90S270). The thresholds for the 1-component stimuli were used to normalize the levels of each of the 5- and 17-component stimuli so that they were equally detectable. If equalization was restricted, then, for the 5- and 17-component stimuli, the N90S270 and N180S0 configurations would yield a greater threshold than the N0S180 configurations. No such difference was found. A subsequent experiment measured binaural detection thresholds, via psychometric functions, for a 2-component complex tone in the same three binaural configurations. Again, no differential effect of configuration was observed. An analytic model of the detection of a complex tone showed that the results were more consistent with free equalization than restricted equalization, although the size of the differences was found to depend on the shape of the psychometric function for detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号