首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Polarized neutron diffraction (PND) experiments were carried out at low temperature to characterize with high precision the local magnetic anisotropy in two paramagnetic high‐spin cobalt(II) complexes, namely [CoII(dmf)6](BPh4)2 ( 1 ) and [CoII2(sym‐hmp)2](BPh4)2 ( 2 ), in which dmf=N,N‐dimethylformamide; sym‐hmp=2,6‐bis[(2‐hydroxyethyl)methylaminomethyl]‐4‐methylphenolate, and BPh4?=tetraphenylborate. This allowed a unique and direct determination of the local magnetic susceptibility tensor on each individual CoII site. In compound 1 , this approach reveals the correlation between the single‐ion easy magnetization direction and a trigonal elongation axis of the CoII coordination octahedron. In exchange‐coupled dimer 2 , the determination of the individual CoII magnetic susceptibility tensors provides a clear outlook of how the local magnetic properties on both CoII sites deviate from the single‐ion behavior because of antiferromagnetic exchange coupling.  相似文献   

2.
《Polyhedron》2005,24(16-17):2112-2115
A ligand, 4-(bis(2-picolyl)aminomethyl)-4′,4″-dimethyltriphenylamine ((2-py)2TPA) and its copper complex were designed and prepared in order to examine intramolecular interactions of organic cation radical–metal ion. CV measurements of the copper complex showed reversible CuI/CuII and TPA/TPA redox couples. The spin–spin interaction in [Cu((2-py)2TPA)Cl]2+ generated upon one electron oxidation of the copper complex was examined by ESR measurements.  相似文献   

3.

A new manganese(II) complex [Mn(im2-py)(tp)(H2O)2]·1.25H2O (im2-py=2-(2'-pyridyl)-4,4,5,5-tetramethylimidazoline-1-oxyl and tp=terephthalato dianion) has been synthesized and characterized structurally and magnetically. The crystal structure consists of neutral chains of manganese(II) ions linked by the terephthalate ligand. Variable temperature magnetic susceptibility data exhibit a weak antiferromagnetic coupling between the manganese(II) ion and the imino nitroxide radical.  相似文献   

4.
The title mononuclear CoII complex, [Co(C5H7N6)2(C14H8O5)2(H2O)2]·2H2O, has been synthesized and its crystal structure determined by X‐ray diffraction. The complex crystallizes in the triclinic space group P, with one formula unit per cell (Z = 1 and Z′ = ). It consists of a mononuclear unit with the CoII ion on an inversion centre coordinated by two 2,6‐diamino‐7H‐purin‐1‐ium cations, two 4,4′‐oxydibenzoate anions (in a nonbridging κO‐monodentate coordination mode, which is less common for the anion in its CoII complexes) and two water molecules, defining an octahedral environment around the metal atom. There is a rich assortment of nonbonding interactions, among which a strong N+—H…O bridge, with a short N…O distance of 2.5272 (18) Å, stands out, with the H atom ostensibly displaced away from its expected position at the donor side, towards the acceptor. The complex molecules assemble into a three‐dimensional hydrogen‐bonded network. A variable‐temperature magnetic study between 2 and 300 K reveals an orbital contribution to the magnetic moment and a weak antiferromagnetic interaction between CoII centres as the temperature decreases. The model leads to the following values: A (crystal field strength) = 1.81, λ (spin‐orbit coupling) = −59.9 cm−1, g (Landé factor) = 2.58 and zJ (exchange coupling) = −0.5 cm−1.  相似文献   

5.
Summary Binuclear NiII and CoII complexes derived from 2,6-diformyl-4-methylphenol and various aromatic monoamines have been prepared and investigated. The NiII complexes have Ni2LCl3 composition while the CoII complexes have Co2L2Cl2 composition, where L represents the organic ligand. The complexes are active catalysts in the oxidation of 3,5-di-t-butylcatechol (3,5-DTBC) by dioxygen, but less so than their Cu analogues. This result is attributed to the absence of antiferromagnetic coupling between the metal centres.  相似文献   

6.
Several new binuclear CuII, NiII, OVIV and MnII complexes of tridentate salicylaldimine (H2L), obtained from 3,5-di-t-butylsalicylaldehyde and o-aminophenol, have been prepared and characterized by analytical, spectroscopic (i.r., u.v.–vis., e.s.r.) techniques, magnetic and thermal measurements. The adduct formation or dissociation of these complexes in the presence of strongly coordinating solvents like pyridine and DMSO did not take place. The complexation of CoII with H2L is accompanied by intramolecular electron transfer from the metal to the coordinated ligand yielding the radical ligand CoIII complex (g = 2.003, A Co = 10 G). The e.s.r. spectra of the CuII, OVIV and MnII complexes in the solid state and in solution are very broad due to intramolecular dipolar antiferromagnetic interactions.  相似文献   

7.
The crystal structures of two new isomorphous transition metal squarato complexes [MII(C4O4)(dmso)2(OH2)2] [MII = CoII (3d7), MnII (3d5); dmso = dimethylsulfoxide] and their magnetic properties are reported. The compounds feature two symmetrically independent chains, in which 1,3‐bridging squarato ligands connect cations in distorted octahedral surroundings of pseudo‐symmetry D4h. From an equimolar solution of CoCl2 · 6H2O and MnCl2 · 2H2O a mixed‐metal coordination polymer crystallizes; it represents a solid solution and adopts the same structure as the corresponding monometallic compounds. The results of the diffraction experiment unambiguously proof the presence of both CoII and MnII cations in either independent site albeit no precise ratio between the metal cations involved may be deduced from these findings. The difference in the magnetic properties between CoII and MnII cations in the given ligand field has allowed us to establish their ratio in the solid solution more reliably than by X‐ray diffraction: Accounting for ligand field potential and spin‐orbit coupling of CoII and regarding MnII as a pure spin system, the calculations yielded a fraction of 73 % CoII in the mixed‐metal polymer. With respect to superexchange effects only weak antiferromagnetic interactions have been detected for the three coordination polymers.  相似文献   

8.
The metal‐organic complexes Co2(terpy)2(btec)·H2O 1 (terpy = 2,2′:6′,2″‐terpyridine, btec = 1,2,4,5‐benzenetetracarboxylate) was synthesized by hydrothermal synthesis method, using 1,2,4,5‐benzenetetracarbonitrile, terpy and CoAc2·4H2O. Single crystal X‐ray diffraction showed that each btec4– ligand links four CoII atoms and each CoII atom links to two btec4– ligands forming a 1D double‐chain structure. Furthermore, the chains pack together through short face–face π–π interactions forming a 3D supramolecular structure. Additionally, the magnetic measurements show antiferromagnetic interactions among metal ions for compound 1 .  相似文献   

9.
A method was developed for the synthesis of mixed-metal heterospin compounds with the direct coordination of the nitroxide fragment based on the replacement of acetonitrile molecules in the heterotrinuclear complex [Co2Gd(NO3)Piv6(CH3CN)2] with nitroxide molecules. The molecular and crystal structure of the heterospin mixed-ligand heterotrinuclear CoII, GdIII, CoII complex [Co2Gd(NO3)Piv6(NIT-Me)2], where NIT-Me is stable nitronyl nitroxide, was established. The magnetic properties of this complex were investigated in the temperature range of 2–300 K. The coordination of nitroxide groups to CoII ions is responsible for strong exchange interactions between the unpaired electrons in the exchange clusters {>-·O-CoII}, resulting in the virtually complete spin coupling between each coordinated >N-·O group and one of the unpaired electrons of each CoII ion at temperatures below 200 K. Dedicated to Academician G. A. Abakumov on the occasion of his 70th birthday. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1742–1745, September, 2007.  相似文献   

10.
Polynuclear complexes are an important class of inorganic functional materials and are of interest particularly for their applications in molecular magnets. Multidentate chelating ligands play an important role in the design and syntheses of polynuclear metal clusters. A novel linear tetranuclear CoII cluster, namely bis{μ3‐(E)‐2‐[(2‐oxidobenzylidene)amino]phenolato}bis{μ2‐(E)‐2‐[(2‐oxidobenzylidene)amino]phenolato}bis(1,10‐phenanthroline)tetracobalt(II), [Co4(C14H11NO2)4(C12H8N2)2], was prepared under solvothermal conditions through a mixed‐ligand synthetic strategy. The structure was determined by X‐ray single‐crystal diffraction and bulk purity was confirmed by powder X‐ray diffraction. The complex molecule has a centrosymmetric tetranuclear chain‐like structure and the four CoII ions are located in two different coordination environments. The CoII ions at the ends of the chain are in a slightly distorted octahedral geometry, while the two inner CoII ions are in five‐coordinate distorted trigonal bipyramidal environments. A magnetic study reveals ferromagnetic CoII…CoII exchange interactions for the complex.  相似文献   

11.
Two new binuclear cobalt(II) complexes, [Co2 L1 (μ2‐DPP)]2+ ( 1 ) (H L1 = N, N, N′, N′‐ tetrakis (2‐benzimidazolylmethyl)‐2‐hydroxyl ‐1,3‐diaminopropane; DPP = diphenylphosphinate) and [Co2 L2 (μ2‐BNPP)2]+ ( 2 ) (H L2 = 2,6‐bis‐[N,N‐di(2‐ pyridylmethyl)aminomethyl]‐4‐methylphenol, BNPP = bis(4‐nitrophenyl)phosphate) have been synthesized and their crystal structures and magnetic properties are shown. In 1 , each CoII atom has a distorted trigonal bipyramidal coordination sphere with a N3O2 donor set and the central two CoII atoms are bridged by one alkoxo‐O atom and one μ2‐DPP ion with the Co1‐Co2 separation of 3.542Å. In 2 , each CoII atom has a pseudo octahedral environment with a N3O3 donor set and the central two CoII atoms are bridged by a phenolic oxygen atom of L2 and two μ2‐BNPP ions with the Co1‐Co2 separation of 3.667Å. Susceptibility data of 1 and 2 indicate intramolecular antiferromagnetic coupling of the high‐spin CoII atoms.  相似文献   

12.
A novel trinuclear complex, [Co(NiL)2(H2O)2](ClO4)2 · 2C2H5OH, was prepared by self-assembly using [NiL] as a new complex ligand; L is the dianion of dimethyl 5,6,7,8,15,16-hexahydro-6,7-dioxodibenzo[1,4,8,11]tetraazacyclotetradecine-13,18-dicarboxylate. The structure of the trinuclear complex was determined by X-ray crystallography. The CoII ion is at the center of the trinuclear complex cation and occupies a distorted octahedral O6 environment, approximating to O h with a 4 T 1g ground state for CoII that has an unquenched spin–orbit coupling reflected in the magnetic properties. Two NiII ions reside in completely same and slightly distorted square-planar N4 coordination geometries. CoII and each NiII are bridged by an oxamido group from one of the two macrocyclic ligands (L). O—H...O and ... interactions link the trinuclear fragments, perchlorate ions and C2H5OH molecules to form a three-dimensional supramolecular architecture.  相似文献   

13.
In the title mixed‐ligand metal–organic polymeric complex, {[Co(NCS)2(C8H12N6)2]·2H2O}n, the asymmetric unit contains a divalent CoII cation, which sits on an inversion centre, two halves of two crystallographically distinct and centrosymmetric 1,4‐bis(1,2,4‐triazol‐1‐yl)butane (BTB) ligands, one N‐bound thiocyanate ligand and one solvent water molecule. The CoII atom possesses a distorted {CoN6} octahedral geometry, with the equatorial positions taken up by triazole N atoms from four different BTB ligands. The axial positions are filled by thiocyanate N atoms. In the crystal, each CoII atom is linked covalently to four others through the distal donors of the tethering BTB ligands, forming a neutral (4,4)‐topology two‐dimensional rhomboid grid layer motif, which is coincident with the (11) crystal planes. Magnetic investigations show that weak antiferromagnetic coupling exists between CoII atoms in the complex.  相似文献   

14.
Starting from Ba2(1,3-pddadp)·8H2O (1,3-pddadp=1,3-propanediamine-N,N′-diacetate-N,N′-di-3-propionate ion) and CoSO4, a new hexadentate [CoII(1,3-pddadp)]2− complex has been prepared. The trans(O6) geometry of this complex was confirmed by comparison of its i.r. and u.v.–vis. spectra with those of [CoII(1,3-pdta)]2− (1,3-pdta is the 1,3-propanediaminetetraacetate ion) and trans(O6)-[CoIII(1,3-pddadp)] complexes of known X-ray crystal structure. Magnetic and electrolytic conductivity properties of these complexes have also been discussed.  相似文献   

15.
Two trinuclear CoII and ZnII complexes, [(CoL)2(OAc)2Co] and [(ZnL)2(OAc)2Zn], with an asymmetric Salen‐type bisoxime ligand [H2L = 4‐(N,N‐diethylamine)‐2,2′‐[ethylenediyldioxybis(nitrilomethylidyne)]diphenol] were synthesized and characterized by elemental analyses, IR, UV/Vis, and fluorescent spectroscopy. The crystal structures of the CoII and ZnII complexes were determined by single‐crystal X‐ray diffraction methods. The CoII atom is pentacoodinated by N2O2 donor atoms from the (L)2– unit and one oxygen atom from the coordinated acetate ion, resulting in a trigonal bipyramid arrangement. With the help of intermolecular hydrogen bonding C–H ··· O and C–H ··· π interactions, a self‐assembled continual zigzag chain‐like supramolecular structure is formed. The ZnII atom is pentacoodinated by N2O2 donor atoms from the (L)2– unit and one oxygen atom from the coordinated acetate ion, resulting in an almost regular trigonal bipyramid arrangement. A self‐assembled continual 1D supramolecular chain‐like structure is formed by intermolecular hydrogen bonding C–H ··· O and C–H ··· π interactions. Additionally, the photophysical properties of the CoII and ZnII complexes were discussed.  相似文献   

16.
The study reports the synthesis of complexes Co(HL)Cl2 ( 1 ), Ni(HL)Cl2 ( 2 ), Cu(HL)Cl2 ( 3 ), and Zn(HL)3Cl2 ( 4 ) with the title ligand, 5‐(pyrazin‐2‐yl)‐1,2,4‐triazole‐5‐thione (HL), and their characterization by elemental analyses, ESI‐MS (m/z), FT‐IR and UV/Vis spectroscopy, as well as EPR in the case of the CuII complex. The comparative analysis of IR spectra of the metal ion complexes with HL and HL alone indicated that the metal ions in 1 , 2 , and 3 are chelated by two nitrogen atoms, N(4) of pyrazine and N(5) of triazole in the thiol tautomeric form, whereas the ZnII ion in 4 is coordinated by the non‐protonated N(2) nitrogen atom of triazole in the thione form. pH potentiometry and UV/Vis spectroscopy were used to examine CoII, NiII, and ZnII complexes in 10/90 (v/v) DMSO/water solution, whereas the CuII complex was examined in 40/60 (v/v) DMSO/water solution. Monodeprotonation of the thione triazole in solution enables the formation of the L:M = 1:1 species with CoII, NiII and ZnII, the 2:1 species with CoII and ZnII, and the 3:1 species with ZnII. A distorted tetrahedral arrangement of the CuII complex was suggested on the basis of EPR and Vis/NIR spectra.  相似文献   

17.
A new dinuclear cobalt(II) complex [Co2L2Cl2(CH3OH)2] ( 1 ), where HL = 3‐[(furan‐2‐ylmethylimino)methyl]‐2‐hydroxy‐5‐methylbenzaldehyde, derived from the in situ condensation of 2,6‐diformyl‐4‐methylphenol with furfurylamine, was prepared and structurally and magnetically characterized. Single crystal X‐ray structural determination reveals that the structure consists of centrosymmetric dinuclear units with each CoII ion in a slightly distorted octahedral environment. Lines’ model, which in principle can theoretically separate in spin‐only and orbital contribution, was used to fit the variable temperature susceptibility (2–300 K), suggesting an intramolecular antiferromagnetic interaction between the cobalt(II) ions.  相似文献   

18.
The reaction of Hppko (Hppko = phenyl 2‐pyridyl ketone oxime) and CoCl2 · 6H2O in the CH3OH solvent with the presence of triethylamine (NEt3) at room temperature and the exposure to air resulted in the formation of a new pentanuclear, mixed‐valence cobalt complex with the molecular formula [{CoII(CH3O)3}2{CoIII33‐O)(ppko)3}Cl2]. X‐ray single crystal analysis displays a trigonal bipyramid configuration with the terminal two CoII ions wrapping an triangle [CoIII3O]7+ core. The intermolecular C–H ··· O and C–H ··· Cl interactions form a 2D network framework. The analysis of magnetic susceptibility revealed the dominant antiferromagnetic interactions and strong orbital contribution of CoII ions.  相似文献   

19.
Summary Dicyanamide complexes of CuII, NiII and CoII of the type M[N(CN)2]2L2, where L = benzimidazole, 2-methyl- or 2-ethylbenzimidazole, have been prepared and studied by spectroscopy and magnetochemistry. The complexes, except for Co[N(CN)2]2 (benzimidazole)2, are six-coordinate, involving bidentate bridging dicyanamide groups. While the NiII complexes have practically octahedral structures, the CuII complexes are pseudooctahedral with similar tetragonal distortion. The ligand field strength in these complexes depends mainly on the steric effect of the benzimidazole ligands. The CoII complex of benzimidazole is monomeric tetrahedral, but that of 2-ethylbenzimidazole is tetragonal octahedral. The oridging function of dicyanamide in the six-coordinate complexes is realized either through both cyanide or through amide and cyanide nitrogens. The complex Cu[N(CN)2]2 (2-methylbenzimidazole)2 is a weak antiferromagnet (J = -0.1 cm–1), exhibiting under ca. 15 K a long-range antiferromagnetic ordering.  相似文献   

20.
The tetraazamacrocyclic ligand 1,4,8,11‐tetramethyl‐1,4,8,11‐tetraazacyclotetradecane (TMC) has been used to bind a variety of first‐row transition metals but to date the crystal structure of the cobalt(II) complex has been missing from this series. The missing cobalt complex chlorido(1,4,8,11‐tetramethyl‐1,4,8,11‐tetraazacyclotetradecane‐κ4N )cobalt(II) chloride dihydrate, [CoCl(C14H32N4)]Cl·2H2O or [CoIICl(TMC)]Cl·2H2O, crystallizes as a purple crystal. This species adopts a distorted square‐pyramidal geometry in which the TMC ligand assumes the trans‐I configuration and the chloride ion binds in the syn‐methyl pocket of the ligand. The CoII ion adopts an S = spin state, as measured by the Evans NMR method, and UV–visible spectroscopic studies indicate that the title hydrated salt is stable in solution. Density functional theory (DFT) studies reveal that the geometric parameters of [CoIICl(TMC)]Cl·2H2O are sensitive to the cobalt spin state and correctly predict a change in spin state upon a minor perturbation to the ligand environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号