首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the mode locking of a diode pumped Nd:YVO4 crystal laser by using a transmission-type single-walled carbon nanotube saturable absorber. The laser operated at 1064 nm pumped by a fiber coupled laser diode with the cavity length of 1826 mm, generated a pulse width of 14 ps at a repetition rate of 82 MHz. The output power of 120 mW was obtained at the absorbed pumping power of 1400 mW.  相似文献   

2.
The use of glasses doped with PbS nanocrystals as intracavity saturable absorbers for passive Q-switching and mode locking of c-cut Nd:Gd0.7Y0.3VO4, Nd:YVO4, and Nd:GdVO4 lasers is investigated. Q-switching yields pulses as short as 35 ns with an average output power of 435 mW at a repetition rate of 6–12 kHz at a pump power of 5–6 W. Mode locking through a combination of PbS nanocrystals and a Kerr lens results in 1.4 ps long pulses with an average output power of 255 mW at a repetition rate of 100 MHz.  相似文献   

3.
A high average power picosecond laser amplification system with diode-end-pumped Nd:YVO4 and diode-side-pumped Nd:YAG is described. Laser with power up to 92.7 W, repetition frequency of 73.3 MHz, pulse duration of 26.5 ps, and beam quality of M2 < 3.5 is generated in the amplification system. Thermal-birefringence-induced depolarization in the Nd:YAG rod laser head amplifier is measured to be 21.9 W though birefringence compensation is performed.  相似文献   

4.
Passively mode-locked Nd:YVO4 laser with up to 13 GHz repetition rate   总被引:1,自引:0,他引:1  
We demonstrate passive mode locking of a Nd:vanadate (Nd:YVO4) laser to repetition rates of up to 13 GHz. With Ti:sapphire pumping, we achieved mode locking at 13 GHz with 310 mW of average output power and pulse widths of 9.5 ps. With diode pumping, we achieved mode locking at a repetition rate of 12.6 GHz with 198 mW of average output power and a pulse duration of 8.3 ps. Received: 6 July 1999 / Published online: 30 July 1999  相似文献   

5.
We report on an experimental study of 888?nm pumped, passively mode-locked, high-power Nd:YVO4 lasers with an enhanced cavity design, involving spatial hole burning (SHB) in the active medium. We observed a significant pulse shortening due to the concept of ??Gain-at-the end,?? despite using long gain length up to 30?mm. A?31.6?W average output power TEM00 Nd:YVO4 oscillator, providing 16.2?ps pulses at an repetition rate of 96?MHz is presented. The pulse duration turns out to be primarily a function of the effective gain length, which can be explained by means of SHB. A?further pulse shortening with decreasing gain length down to 9.5?ps at 11.1?W average output power is demonstrated.  相似文献   

6.
This paper reports on the generation of picosecond (ps) laser pulses by self-phase-adjusting additive-pulse-mode-locking (PSA) at wavelengths of 0.9 and 1.3 μm. The main objective of this work was to investigate and compare the characteristic optical properties of ps lasers based on different Nd-doped laser crystals like Nd:YAG, Nd:YAlO3, Nd:YVO4 and Nd:GdVO4. As a result of these investigations a mode-locked Nd:YVO4 laser for example, generated, ps pulses at 1.3 μm with a duration of 7 ps, a repetition rate of 160 MHz and an average power of 4.7 W. At 0.9 μm pulses with a duration of 1.9 ps were obtained at a repetition rate of 158 MHz and an average power of 2.8 W. PACS  42.70.Hj; 42.65.Re; 42.65.Ky  相似文献   

7.
Li  F. -Q.  Zong  N.  Han  L.  Tian  C. -Y.  Bo  Y.  Peng  Q. -J.  Cui  D. -F.  Xu  Z. -Y. 《Laser Physics》2011,21(2):367-371
A high-efficiency high-power diode-directly-pumped tenth-order harmonic mode-locked TEM00 Nd:YVO4 laser with 1 GHz repetition rate was first demonstrated. The maximum output power was 10.4 W with optical-optical efficiency of 41.8% and slope efficiency of 78.1%, respectively, the pulse width was about 30 ps at the output power of 9.6 W. Based on the large third-order nonlinearity of Nd:YVO4, the tenth-order harmonic mode-locked pulses were induced by the intensity-dependent Kerr effect and the cooperative action of counter-propagating pulses colliding in the laser crystal for a colliding-pulse-modelocking-like cavity. The pulses were further modulated by a semiconductor saturable absorber mirror.  相似文献   

8.
A diode pumped Nd:YVO4 semiconductor saturable absorber mirrors (SESAM) passive mode-locked intracavity frequency doubled laser was studied. A type I phase matching LBO frequency doubling crystal was inserted in the cavity. With a pump power of 4.5 W, a 140 mW output of frequency doubled beam was achieved with LBO, while the power of one fundamental frequency beam was 240 mW with repetition rate of 85 MHz, and pulse duration of 5.2 ps.  相似文献   

9.
We report a high repetition rate Q-switched Nd:YVO4/Cr4+:YAG micro laser with small pump power. Unwanted defects in pulse train, which are inherently large in passively Q-switched laser, was simply minimized by controlling temperature of Nd:YVO4/Cr4+:YAG medium. When T 0 = 90% Cr4+:YAG and R OC = 90% output coupler were used, Q-switched Nd:YVO4/Cr4+:YAG micro laser showed the optimum output; maximum output power of 58 mW, optical-to-optical efficiency of 9.1%, repetition rate of 1.1 MHz, and pulse width of 57 ns were achieved with 640 mW pumping. MHz-order repetition rate in Nd:YVO4/Cr4+:YAG Q-switched laser with low pumping (<1 W) is the highest value to the best of our knowledge.  相似文献   

10.
The highest power neodymium-doped mixed vanadate laser oscillator is presented. Using a crystal of Nd:Gd0.6Y0.4VO4 in the bounce geometry, average output powers of 27.5?W in multimode and 23?W in TEM00 operation were achieved. The first nonlinear mirror mode-locked operation of a mixed vanadate laser is also presented, with 16.8?W output power??the highest power mode-locked mixed vanadate oscillator, to the best of our knowledge. Self-starting continuous-wave mode locking was observed at a repetition rate of 100?MHz, pulse duration of 12.7?ps and central wavelength of 1063.8?nm, in TEM00 mode.  相似文献   

11.
We report a high-repetition-rate, high-peak-power laser diode (LD) pumped burst-mode 1064 nm laser from a Nd:YVO4/Nd:YAG master oscillator power amplifier. 10–100 kHz pulse burst in a duration up to 2 ms is achieved in LD end-pumped Nd:YVO4 acousto-optically Q-switched laser. After amplification with LD side-pumped Nd:YAG rod amplifiers, the single pulse energy reaches 73 mJ in 10 kHz pulse burst laser with a peak power of 7.8 MW.  相似文献   

12.
X. Wang  M. Li 《Laser Physics》2010,20(4):733-736
A diode-pumped passively mode-locked low-doped Nd:YVO4 green laser with a semiconductor saturable absorber mirror (SESAM) and an intracavity frequency-doubling KTP crystal is demonstrated. In order to efficiently release the thermal effect, a low-doped Nd:YVO4 crystal with the Nd3+ concentration of 0.1 at % is employed as the gain medium. The maximum average output power of 3.1 W at 532 nm with a repetition rate of 102 MHz is obtained under the pump power of 25 W, corresponding to an optical conversion efficiency of 12.4%. The 532 nm mode locked pulse width is estimated to be approximately 6.1 ps.  相似文献   

13.
J Zhang  H Yu  Y Li  L Han  Y Wu  H Zhang 《Optics letters》2012,37(17):3501-3503
We report efficient, diode-pumped, self-frequency doubling (SFD) in the newly developed laser crystal Nd3+:Na3La9O3(BO3)8 (Nd:NLBO). More than 730?mW of fundamental output power at 1072?nm was achieved with a slope efficiency of 16.2%. With incident pump power of 8?W, 29?mW of green cw laser emission at 536?nm was observed with proper phase matching. This initial performance and the good optical properties of the crystalline host are encouraging for the development of a high power diode-pumped SFD visible light laser source.  相似文献   

14.
We present the performance of diode end-pumped Nd:YVO4 laser in Q-switched and Q-switched mode-locking oscillation using a single-walled carbon nanotube based saturable absorber, which was fabricated using similar vertical evaporation technique. The average output power, repetition rate and pulse width of the Q-switched laser output were studied with different output couplers. The maximum average output power was 130 mW. For Q-switched mode-locking operation, the repetition rate of the mode-locked pulses concentrated in the Q-switched envelope was 58 MHz. The repetition rate of the Q-switched envelope maintained at 18 kHz, while the pulse width decreased along with the increasing of pump power. The maximum average output power was 53 mW.  相似文献   

15.
We report on the generation of high average power, high repetition rate, and picosecond (ps) deep-ultraviolet (DUV) 177.3 nm laser. The DUV laser is produced by second-harmonic generation of a frequency-tripled mode-locked Nd: YVO4 laser (<15 ps, 80 MHz) with KBBF nonlinear crystal. The influence of different fundamental beam diameters on DUV output power and KBBF-SHG conversion efficiency are investigated. Under the 355 nm pump power of 7.5 W with beam diameter of 145 μm, 41 mW DUV output at 177.3 nm is obtained. To our knowledge, this is the highest average power for the 177.3 nm laser. Our results provide a power scaling by three times with respect to previous best works.  相似文献   

16.
By using a piece of single-walled carbon nanotube saturable absorber, the performance of the passively Q-switched composite Nd:YVO4 laser has been demonstrated for the first time. The maximum average output power and the shortest pulse width are 1220 mW and 103 ns at the incident pump power of 5.04 W for a 10% transmission of the output coupler. The highest pulse repetition rate of 415.6 kHz and the largest single-pulse energy of 2.94 μJ are also obtained. The composite Nd:YVO4 crystal has more excellent laser performance than the normal Nd:YVO4 crystal at 1064 nm.  相似文献   

17.
We report the amplification of a low-power 4-mW microchip Nd:YVO4 laser at 1064?nm, passively Q-switched with a semiconductor saturable absorber mirror (SESAM). An end-pumped two-stage amplifier module with small-signal gain of 56?dB has been designed to boost the power, generating 6?W at 550?kHz with 100-ps pulses and M 2?=?1.2. Second-harmonic generation in critically phase-matched LBO yielded 3?W at 532?nm, with pulse stability comparable to that of the fundamental frequency.  相似文献   

18.
We report a ps diode-pumped Nd:YVO4 laser system for micro-machining applications. The system consists of a passively mode-locked oscillator followed by a regenerative amplifier. It provides laser pulses at 1064 nm with a pulse duration of 10.2 ps, a repetition rate of 20 kHz and an average output power of 10.8 W. This average power corresponds to a pulse energy of 0.54 mJ. Second-harmonic generation in LBO and fourth-harmonic generation in BBO provide visible (532-nm) and ultraviolet (266-nm) radiation with pulse energies of 270 J and 75 J, respectively. Amplification in a diode-pumped single-pass Nd:YVO4 amplifier increases the pulse energy of the fundamental 1064-nm laser pulses to 1 mJ. PACS 42.55.Xi; 42.60.Da; 42.65.Ky; 42.65.Re  相似文献   

19.
We report on an 880 nm quasi-continuously pumped Nd:YVO4 grazing-incidence "bounce" amplifier, operating at a 300 Hz repetition rate. More than 70 dB small signal gain is achieved with a single crystal. Combined with fast programmable modulators, high-contrast and near-diffraction-limited pulse sequences at the 100 μJ level are produced and can be tailored in terms of pulse duration, amplitude, and a temporal spacing well into the microsecond range. This system could significantly improve extreme-UV comb generation based on parametric amplification and harmonic upconversion of two near-IR comb laser pulses.  相似文献   

20.
X. Fu  Q. Liu  X. Yan  J. Cui  M. Gong 《Laser Physics》2010,20(8):1707-1711
We report a high-repetition-rate, high-pulse-energy master oscillator power amplifier (MOPA) laser system, in which the seed laser from the Nd:YAG rod-based oscillator cavity dumped at 500 kHz, was scaled up consecutively by a four-stage Nd:YVO4 preamplifier and a two-stage Nd:YAG zigzag slab main amplifier. The laser pulsed output with the average power of 510 W was achieved, with the efficiency extraction of 26.6% at the main amplifier stage and the single-pulse energy of 1.02 mJ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号