首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A high sensitive and compact refractive index sensor based on slotted photonic crystal waveguide (S-PhCW) is demonstrated. This design is worked on a Mach–Zehnder interferometer (MZI) configuration with S-PhCW as the measuring arm, which can be used to detect any changes in refractive index that correspond to different concentration of the measuring liquid. Combining the slow light enhancement in photonic crystal waveguide (PhCW) with the advantage of excellent optical confinement in slot waveguide, the sensitivity of this simple scheme can reach to 2.3 × 109 nm/RIU with the active region of only 1 mm long.  相似文献   

2.
岳嵩  李智  陈建军  龚旗煌 《物理学报》2011,60(9):94214-094214
提出了一种基于耦合介质纳米线的深亚波长局域波导,通过两根紧邻的高折射率介质纳米线的耦合,该波导可以将光场有效束缚在纳米线之间的低折射率纳米缝隙中. 计算模拟的结果表明,该波导的有效模场面积达到Λ20/200,比单根纳米线波导小一个数量级,这种深亚波长的模场束缚能力可以与表面等离激元混合波导相比拟. 计算模拟的结果还表明,纳米线可能带有的低折射率氧化膜、低折射率衬底的存在、以及纳米线间尺寸存在的一定差异对于该波导结构的实际应用都不会产生很大 关键词: 介质波导 亚波长局域 表面等离激元波导 纳米线  相似文献   

3.
We numerically characterize a novel type of a photonic crystal waveguide, which consists of several rows of periodically arranged dielectric cylinders. In such a nanopillar photonic crystal waveguide, light confinement is due to the total internal reflection. A nanopillar waveguide is a multimode waveguide, where the number of modes is equal to the number of rows building the waveguide. The strong coupling between individual waveguides leads to the proposal of an ultrashort directional coupler based on nanopillar waveguides. We present a systematic analysis of the dispersion and transmission efficiency of nanopillar photonic crystal waveguides and directional couplers. Plane wave expansion and finite difference time domain methods were used to characterize numerically nanopillar photonic crystal structures both in two- and three-dimensional spaces.  相似文献   

4.
A line-defect waveguide within a two-dimensional magnetic-fluid-based photonic crystal with 45o-rotated square lattice is presented to have excellent slow light properties. The bandwidth centered at $ \lambda_{0} $  = 1,550 nm of our designed W1 waveguide is around 66 nm, which is very large than that of the conventional W1 waveguide as well as the corresponding optimized structures based on photonic crystal with triangular lattice. The obtained group velocity dispersion $ \beta_{2} $ within the bandwidth is ultralow and varies from ?1,191 $ a/(2\pi c^{2} ) $ to 855 $ a/(2\pi c^{2} ) $ (a and c are the period of the lattice and the light speed in vacuum, respectively). Simultaneously, the normalized delay-bandwidth product is relatively large and almost invariant with magnetic field strength. It is indicated that using magnetic fluid as one of the constitutive materials of the photonic crystal structures can enable the magnetically fine tunability of the slow light in online mode. The concept and results of this work may give a guideline for studying and realizing tunable slow light based on the external-stimulus-responsive materials.  相似文献   

5.
Happ TD  Kamp M  Forchel A 《Optics letters》2001,26(14):1102-1104
We have studied the coupling of a classic ridge waveguide with a two-dimensional photonic crystal (PC) waveguide, using finite-difference time-domain calculations. The ridge waveguide exhibits only a weak refractive-index confinement of light, as it is commonly used in buried-heterostructure or ridge-waveguide lasers. The light is coupled to a PC waveguide that consists of one missing row along the ?K direction in a triangular lattice of air cylinders in AlGaAs. We compare various designs for PC tapers with that of a classic taper and for butt coupling. The calculation yields high coupling efficiency that exceeds 80% for a 2.5-microm-long PC taper. In addition, the dependence of the efficiency on the PC air-fill factor and on alignment tolerances is analyzed.  相似文献   

6.
姜凌红  侯蓝田  杨倩倩 《物理学报》2010,59(7):4726-4731
应用多极法比较和分析了相同结构参数下的正六边形、正八边形和正十边形光子晶体光纤的色散系数、色散斜率、非线性系数和限制损耗.正六边形光子晶体光纤更适合用于色散补偿和高非线性的研究,在波长0.8 μm处的非线性系数达到了0.37 m-1·W-1;正十边形光子晶体光纤更适合用于色散平坦和低限制损耗的研究,在波长0.8 μm处的限制损耗相对正六边形光子晶体光纤减小了约3000个数量级,在1.4—1.65 μm波长范围内,正十边形光纤的色散系数介于-0.07—0.17 p  相似文献   

7.
为了解决光子晶体波导出射端光场控制, 同时解决二维三角晶格光子晶体波导出射光辐射困难的问题。利用二维三角晶格光子晶体设计了一种新型光子晶体波导出射口结构。在二维三角晶格光子晶体波导出射端引入两个微腔, 通过光波与微腔发生共振, 形成类似于三个点光源干涉的出射光, 同时进一步提出波导出射端喇叭口干涉出射光定向辐射的设计。通过这种微腔喇叭口设计, 利用时域有限差分法分析结果表明光波实现很好的定向辐射, 并且辐射距离显著提高。  相似文献   

8.
研究了慢光模式在SOI(silicon-on-insulator)材料光子晶体线缺陷弯折波导中的传输特性. 通过优化波导弯折处的结构参数,慢光模式在光子晶体60°与120°弯折波导中的透射率提高10倍以上,归一化透射率分别达到80%和60%以上. 为了进一步减慢光速,设计了新颖的高Q值耦合腔弯折波导结构,在归一化透射率达到75%的基础上,光波群速度低至c/170(c为真空光速). 研究结果对于增强光子晶体的慢光效应,提高光子晶体慢光器件的微型化和集成化都有一定的积 关键词: 光子晶体 慢光 弯折波导 透射率  相似文献   

9.
研究了单光子晶体界面介质波导中的慢光效应.芯层-空气层界面的全内反射效应以及光子晶体基底的禁带效应共同形成了对光场能量的横向约束.用基于超元胞的平面波展开法计算得到了导模色散曲线,并据此对其色散、群速以及群速色散性质做了详尽分析.由于利用了色散曲线慢光区域内拐点附近低群速色散的部分,该单光子晶体界面介质波导具有良好的慢光特性.对两个不同导模计算得到的平均群速分别为c/98和c/376,可用相对频带宽度分别达到2.1×10-3和4.1×10-4.另外,该慢光结构可以侧向耦合的方式克服光子晶体慢光波导耦合困难的缺点.  相似文献   

10.
New hollow ring defect structure is introduced in photonic crystal fiber design for ultra- flat zero dispersion with very low waveguide losses. The hollow ring defect consisted of a central hole surrounded by a doped silica ring provides highly flexible defect engineering capabilities in photonic crystal fibers to achieve precise control of dispersion value and dispersion slope while independently maintaining low waveguide losses, which was not attainable in previous designs. A nearly flat zero dispersion of D=0±0.51 ps/nm km was obtained in the wavelength range of 1.44–1.61 μm with the maximum slope of ?2.7×10?2 ps/nm2 km. The confinement loss was less than 5.75×10?8 dB/m along with the bending loss of 2.8×10?6 dB/m for the radius of 10 mm, and splice loss of less than 1.57 dB to conventional single mode fiber at 1.55 μm.  相似文献   

11.
We demonstrate a 300?μm long silicon photonic crystal (PC) slot waveguide device for on-chip near-infrared absorption spectroscopy, based on the Beer-Lambert law for the detection of methane gas. The device combines slow light in a PC waveguide with high electric field intensity in a low-index 90?nm wide slot, which effectively increases the optical absorption path length. A methane concentration of 100?ppm (parts per million) in nitrogen was measured.  相似文献   

12.
A statistical theory of the coupling between a quantum emitter and Anderson-localized cavity modes is presented based on a dyadic Green's function formalism. The probability of achieving the strong light-matter coupling regime is extracted for an experimentally realistic system composed of InAs quantum dots embedded in a disordered photonic crystal waveguide. We demonstrate that by engineering the relevant parameters that define the quality of light confinement, i.e., the light localization length and the loss length, strong coupling between a single quantum dot and an Anderson-localized cavity is within experimental reach. As a consequence, confining light by disorder provides a novel platform for quantum electrodynamics experiments.  相似文献   

13.
Shi-Ling Li 《Optik》2013,124(24):6919-6921
A photonic crystal slab (PhC slab) which was constructed as a 2D hexagonal lattice with a finite depth was etched into an Er:LiNbO3 film waveguide. The band diagrams and transmission spectra were simulated by plane wave expansion (PWE) and the finite-difference time-domain (FDTD) method. A high refractive index contrast of 0.5 enables strong light confinement in the vertical direction and a broad band gap. The simulated transmittance spectra indicate that the stop band is determined by lattice constant. The transmission spectra along ΓM of the PhC slab with a lattice constant 500 nm show a 250-nm broad stop band in the wavelength range from 1.33 to 1.58 μm and sharp band edge.  相似文献   

14.
张昌莘  许兴胜 《中国物理 B》2012,21(4):44213-044213
A two-dimensional photonic crystal coupled-cavity waveguide is designed and optimized, the transmission spectrum is calculated by using the finite-difference time-domain method, and the group velocity of c/1856 is obtained. To our knowledge, this value of group velocity is the lowest group velocity in a photonic crystal waveguide calculated from its transmission spectrum so far. The result is confirmed by the photonic band structure calculated by using the plane wave expansion method, and it is found that the photonic crystal waveguide modes in a photonic band structure are in accordance with those in the transmission spectrum by using the finite-difference time-domain method. The mechanism of slow light in the coupled-cavity waveguide of photonic crystal is analysed.  相似文献   

15.
A technique to produce low loss small angle bends in photonic crystal waveguides is presented. The technique consists of bridging parallel input and output waveguide segments with an inclined waveguide region of the same basic design that has a lateral dielectric shift. Results are presented for waveguides produced by enlarging the silicon gap along the central line, separating air holes in a square array photonic crystal for the TE polarization and an operating wavelength of λo = 1.55 μm. This low loss waveguide bending technique is applied to the design of Y branch and Mach–Zehnder photonic crystal structures. Simulation of the performance of the dielectric structures is achieved using 2-D FDTD, similar results are anticipated when applied to 3-D waveguide configurations and for other photonic crystal layouts.  相似文献   

16.
利用耦合波导列提高光子晶体波导辐射   总被引:1,自引:0,他引:1       下载免费PDF全文
将耦合波导列应用于光子晶体单模波导,提出一种提高光辐射的光子晶体结构. 基于时域有限差分方法的理论研究表明,当将耦合波导列附加到单模光子晶体波导出口端的适当位置,使出射光分成若干强弱不一的光束,这些光束在传播空间通过干涉形成一定程度的汇聚,大大提高了光子晶体波导在水平方向的光辐射效率. 另外,当耦合波导列的行数大于某固定值(2N=8)时,辐射质量基本保持不变,由此可获得最紧凑的器件结构. 这种类型光子晶体在近场光学和集成光学等诸多方面有潜在的应用价值. 关键词: 光子晶体波导 光辐射 波导列 耦合波导  相似文献   

17.
In this study, the design of a polarization-independent (dual-polarization) waveguide is presented by utilizing surface modes of photonic crystals. The waveguide structure operates in a frequency interval that is commonly shared by both transverse-electric (TE) and transverse-magnetic (TM) polarizations. The numerical calculations based on plane wave expansion and finite-difference time-domain methods are carried out to design and demonstrate a surface mode waveguide that provides confinement and guiding for both TE and TM modes. Once the relevant modes are properly excited, the high transmission efficiency of the photonic crystal surface waveguide is ensured. The demand to have polarization-insensitive devices makes our proposed design an important component for the photonic integrated circuit applications. Finally, we also propose a broadband surface mode photonic crystal waveguide with a bandwidth value of 28% for only TE polarization.  相似文献   

18.
The optical confinement of spatial frequencies in the photonic crystal waveguide has been investigated theoretically and simulated numerically. It is found that the enhanced gap confinement is at frequency close to the upper band edge, in contrary to the conventional concept that the strongest optical confinement is found at frequencies near the mid-gap. The anomalous phenomenon may be attributed to a Van Hove saddle point singularity in a band adjacent to a photonic crystal band gap. In general, the saddle point favors the appearance of a very flat band, which in turn causes an enhanced confinement at band-gap frequencies.  相似文献   

19.
Wang L  Hoshino K  Zhang X 《Optics letters》2011,36(10):1917-1919
We numerically investigate the propagation of light through the photonic crystal (PhC) waveguide on low refraction index material for near-field light focusing at the visible wavelength (635 nm) by incorporating a center air slot and Fabry-Perot resonator on the scanning tip. Perturbations by water and substrate refraction index changes of the PhC are analyzed by the finite-difference time-domain method to show minimal impact on light confinement and throughput. Such a total dielectric probe tip design has great potential to complement the current widely used metal-coated optical-fiber-based light confinement probe.  相似文献   

20.
We present an efficient means of light extraction from two-dimensional photonic crystal (2D PC) cavities with SiO2 cladding. We propose a vertically coupled system consisting of a 2D PC cavity and a hydrogenated-amorphous-silicon (a-Si:H)-wire waveguide, which we theoretically investigate using the 3D finite-difference time-domain method. Light can be extracted with an efficiency of greater than 95% to both output ports of the a-Si:H-wire waveguide or extracted with an efficiency of greater than 90% to a single output port of the a-Si:H-wire waveguide with a reflector.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号