首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A simple and fast method to fabricate nanostructured substrates with silver nanoparticles over a large area for surface-enhanced Raman scattering (SERS) is reported. The method involves two steps: (1) dip the substrate into a silver nitrate solution for a few minutes, remove the substrate from the solution, and then air dry and (2) process the silver nitrate coated substrate by femtosecond (fs) laser pulses in air. The second step can create silver nanoparticles distributed on the nanostructured surface of the substrate by the photoreduction of fs multiphoton effects. This study demonstrates that an enhancement factor (EF) greater than 5×105, measured by 10−6 M Rhodamine 6G solution, can be achieved. The proposed technique can be used to integrate the SERS capability into a microchip for biomedical and chemical analysis.  相似文献   

2.
Huang Y  Zhang C  Xu Y  Li D  Leng Y  Li R  Xu Z 《Optics letters》2011,36(6):781-783
A pulse clean technique in time domain combining noncollinear optical-parametric amplification and second-harmonic generation is demonstrated. The measurement-limited >10(10) temporal contrast ratio of the 0.5?mJ/40?fs pulse near 800?nm is obtained over a large temporal range extending from <1?ps before the main pulse. The contrast ratio enhancement as fourth power of the initial contrast is demonstrated. The total efficiency is >6% for the 8.2?mJ/40?fs initial incident femtosecond pulse.  相似文献   

3.
王建州  黄延穗  许毅  李妍妍  陆效明  冷雨欣 《物理学报》2012,61(9):94214-094214
本文利用交叉偏振波产生技术(XPW)对800 nm波段钛宝石飞秒激光器输出的激光脉冲进行时域净化, 提高脉冲时域对比度, 并测量验证了1011对比度的脉冲, 达到测量仪器的动态范围极限, 比初始脉冲时域对比度有三个量级的提高, XPW的效率为22%. 同时发现净化后脉冲光谱宽度也得到一定展宽, 进一步利用啁啾镜对和补偿片对净化后的脉冲进行色散补偿, 得到25 fs脉宽的脉冲. 利用该净化后的激光脉冲作为种子注入已有的太瓦级钛宝石啁啾脉冲放大系统中, 在输出脉冲能量250 mJ, 宽度50 fs, 对应峰值功率5 TW的情况下, 在主脉冲前100 ps以外的范围内测量验证了1011的脉冲对比度.  相似文献   

4.
We have used the pump-probe technique to measure the photostimulated positive ion yield as a function of time delay between two sub-threshold femtosecond laser pulses. We find that the ion yield from UV femtosecond irradiated MgO depends critically on the laser pulse delay, (t, in two-pulse experiments. In single-pulse experiments, excitation of MgO produces a variety of ions including Mg+, MgO+, and a significant yield of H+. In contrast, if the femtosecond laser pulse is split into two sub-threshold beams and then recombined with a variable time delay, the ion yield may be drastically altered depending on the delay between pulses. The Mg+ desorption yield displays three distinct lifetimes and persists for laser delays of over 100 ps. A pulse delay of only (t=500 fs nearly eliminates ion desorption except for Mg+. The use of a pair of delayed femtosecond laser pulses can thus control the species of the desorbed ion. The mechanism for femtosecond laser desorption is clearly different from nanosecond laser desorption. We hypothesize that the creation of electron-hole pairs by nonresonant two-photon excitation contributes to the ultrafast desorption mechanism.  相似文献   

5.
声光偏转器扫描飞秒激光的时间色散补偿   总被引:1,自引:0,他引:1       下载免费PDF全文
研究了声光偏转器(AOD)扫描飞秒激光的时间色散效应及补偿方案.在800nm波长处,单个AOD引入的群延时色散(GDD)可达~9300fs2.在深入分析AOD和棱镜角色散原理的基础上,提出了用色散棱镜预补偿AOD对飞秒脉冲的时间色散,并进行了实验证实.在AOD中心频率处(70MHz),将398fs的脉冲压缩到122fs,且整个带宽范围内(50MHz—90MHz)脉宽变化范围为120fs—180fs.这表明该方案用于AOD扫描飞秒激光时进行时间色散补偿是非常有效的. 关键词: 飞秒激光 声光偏转器 时间色散 脉冲压缩  相似文献   

6.
The effect of fluence and pulse duration on the growth of nanostructures on chromium (Cr) surfaces has been investigated upon irradiation of femtosecond (fs) laser pulses in a liquid confined environment of ethanol. In order to explore the effect of fluence, targets were exposed to 1000 pulses at various peak fluences ranging from 4.7 to 11.8?J?cm–2 for pulse duration of ~25?fs. In order to explore the effect of pulse duration, targets were exposed to fs laser pulses of various pulse durations ranging from 25 to 100?fs, for a constant fluence of 11.8?J?cm–2. Surface morphology and structural transformations have been analyzed by scanning electron microscopy and Raman spectroscopy, respectively. After laser irradiation, disordered sputtered surface with intense melting and cracking is obtained at the central ablated areas, which are augmented with increasing laser fluence due to enhanced thermal effects. At the peripheral ablated areas, where local fluence is approximately in the range of 1.4–4?mJ?cm–2, very well-defined laser-induced periodic surface structures (LIPSS) with periodicity ranging from 270 to 370?nm along with dot-like structures are formed. As far as the pulse duration is concerned, a significant effect on the surface modification of Cr has been revealed. In the central ablated areas, for the shortest pulse duration (25?fs), only melting has been observed. However, LIPSS with dot-like structures and droplets have been grown for longer pulse durations. The periodicity of LIPSS increases and density of dot-like structures decreases with increasing pulse duration. The chemical and structural modifications of irradiated Cr have been revealed by Raman spectroscopy. It confirms the formation of new bands of chromium oxides and enol complexes or Cr-carbonyl compounds. The peak intensities of identified bands are dependent upon laser fluence and pulse duration.  相似文献   

7.
A two-stage optical parametric amplifier driven by a frequency-tripled beam from the high-energy iodine laser system SOFIA was built. This single-shot Optical Parametric Chirped Pulse-Amplification facility (OPCPA) and the system synchronizing the pump and signal pulses are described in detail. The chirped seed pulse of a Ti:sapphire oscillator running at the central wavelength of 800?nm is amplified in the two-stage (LBO and KDP) optical parametric amplifier over 108 times. The amplified spectral bandwidth of 68?nm corresponds to the pulse duration of 14?fs when a transform-limited pulse is assumed. This implies a compressed pulse of TW power. Systematic gain measurements reveal a good match with the theoretical predictions. Signal and idler beam fluence profiles are presented. The suitability of the iodine photo-dissociation laser as a pump source for the OPCPA technique is thus proved for the first time experimentally. A distinctive feature of the iodine laser is its very narrow gain bandwidth (<0.1?cm?1) and, therefore, the conventional chirped-pulse amplification technique does not lead to pulse durations at the femtosecond level.  相似文献   

8.
9.
The saturated nonlinear absorption and Kerr nonlinearities of an aqueous pseudoisocyanine solution are investigated at the wavelengths of 532 and 529 nm with the use of pulsed laser radiation of different duration (8 ns and 475 fs). The measured values of the nonlinear refractive indices amount to ?6×10?12 (t=8 ns) and ?8×10?14 cm2W?1 (t=475 fs). The change in self-action effects in pseudoisocyanine from self-defocusing to self-focusing revealed in the case of increasing intensity of femtosecond laser pulses is attributed to the effect of a fifth-order nonlinear optical process. The nonlinear refractive index responsible for this process amounts to 4×10?24 cm4 W?2. The imaginary part of the third-order nonlinear susceptibility, responsible for the induced transparency of the pseudoisocyanine solution, is Imχ (3)=?2×10?12 esu. Temporal changes in the shape of nanosecond laser pulses due to the nonlinear refraction induced by a thermal process are analyzed.  相似文献   

10.
A specially designed telescope with defocusing lens and off-axis parabolic mirror, which is working as a nonlinear element and producing self-phase modulation, was implemented for intense (3.1?TW/cm2) Fourier Transform Limit femtosecond laser pulses with Gaussian beam profiles. The pulse spectrum was broadened quasi- homogeneously over the beam cross-section due to the change in the lens thickness compensating for the reduction of the beam intensity from its center to periphery. In experimental demonstrations a set of chirped mirrors allowed for the spectral phase correction to a final pulse compression of 20?fs from 40?fs.  相似文献   

11.
The hard X-ray yield generated with femtosecond laser pulses is studied for differently chirped irradiating laser pulses. The radiation of a Ti:sapphire CPA laser system (29 fs, 750 μJ, 1 kHz) is focused onto an iron containing solid state target producing incoherent hard X-ray radiation, Bremsstrahlung as well as target-specific Kα and Kβ lines. The hard X-ray yield has been optimized by introducing negative and positive group delay dispersion (GDD) and third order dispersion (TOD) to the femtosecond laser pulse. The Kα yield could be enhanced by a factor of 1.7 and reached 1.9×108 Fe Kα photons/s in 4π with the laser pulse positively chirped, and 1.5×108 Fe Kα photons/s with the pulse negatively chirped. When the pulse energy is lowered to about 400 μJ the yield maximum at negative chirp vanishes and only the maximum at positive chirp remains. We explain this behavior with an increased electron temperature caused by the induced GDD and TOD in the pulse. PACS 42.65.Re; 52.38.Ph; 52.50.Jm  相似文献   

12.
We present direct observation of the velocity-selective optical pumping of the Cs ground state hyperfine levels induced by the femtosecond (fs) laser oscillator centered at either D2 (6 2S1/2↦6 2P3/2, 852 nm) or D1 (6 P1/2, 894 nm) cesium line. We utilized previously developed modified direct frequency comb spectroscopy (DFCS) which uses a fixed frequency comb for the excitation and a weak cw scanning probe laser centered at the 133Cs 6 2S1/2↦6 2P3/2 transition (D2 line) for ground levels population monitoring. The frequency comb excitation changes the usual Doppler absorption profile into a specific periodic, comblike structure. The mechanism of the velocity selective population transfer between the Cs ground state hyperfine levels induced by fs pulse train excitation is verified in a theoretical treatment of the multilevel atomic system subjected to a pulse train resonant field interaction.  相似文献   

13.
飞秒激光在铝膜中驱动冲击波的特性   总被引:1,自引:0,他引:1       下载免费PDF全文
为探索研究飞秒激光在材料中驱动冲击波的相关特性,采用激光脉冲频域干涉测试技术对脉冲宽度35fs、脉冲能量0.7mJ、功率密度1014W/cm2量级的飞秒激光脉冲在200nm厚铝膜中驱动冲击波的过程进行了实验测量。通过测量冲击波在铝膜中的渡越时间,获得激光脉冲在铝材料中驱动的冲击波平均速度约为6km/s;通过对不同时刻铝膜自由面频域干涉场测量结果的分析,获得铝材料自由表面速度达1km/s,根据平面冲击波的关系,推算其冲击压强达到9GPa。  相似文献   

14.
The angular distribution of CH3I is investigated experimentally using a single Fourier transform-limited laser pulse and a pulse train, where a 90-fs 800-nm linearly polarized laser field with a moderate intensity of 2.8×1013 W/cm2 is used. The dynamic alignment is demonstrated in a single pulse experiment. Moreover, a pulse train is used to optimize the molecular alignment, and the alignment degree is almost identical to that with the single pulse. The results are analysed by using chirped femtosecond laser pulses, and it demonstrates that the structure of pulse train rather than its effective duration is crucial to the molecular alignment.  相似文献   

15.
The propagation of an intense (I≤106 W/cm2) femtosecond laser radiation with a duration of ~100 fs through gas-filled dielectric capillaries was studied. The radiation with a power up to 0.2 TW propagates along the paths up to 20 cm with a transmission efficiency of ~45%. The beam transverse structure at the output is close to the capillary fundamental mode under gas-ionization conditions. The transformation of pulse spectrum was studied as a function of input intensity. It is demonstrated experimentally that the pulse is compressed to a duration of ~30 fs due to the compensation of ionization-induced self-phase modulation in a linear dispersive element at the capillary output.  相似文献   

16.
We report successful energy scaling of a room-temperature femtosecond Cr4+: forsterite laser by using a single-walled carbon nanotube saturable absorber (SWCNT-SA). By incorporating a q-preserving multipass cavity, a repetition rate of 4.51?MHz was realized, and the oscillator produced 121?fs, 10?nJ pulses at 1247?nm, with an average output power of 46?mW. To the best of our knowledge, the peak power of 84?kW is the highest generated to date from a SWCNT-SA mode-locked oscillator. Furthermore, energy scaling of a femtosecond multipass-cavity laser, mode-locked using a SWCNT-SA, is demonstrated for the first time.  相似文献   

17.
A method based on an original electron microscope created for investigating photoelectron beams is presented. It ensures a nanometer spatial resolution and picosecond time resolution. Electrons appearing when a metal needle is irradiated by femtosecond laser pulses are transmitted through a dielectric microcapillary and are subjected to a ponderomotive potential created by femtosecond laser radiation focused near the capillary tip. The position-sensitive detection scheme allows for the detection of the spatial profile of a photo-electron beam with a magnification of K ≅ 4 × 104. The time structure of the photoelectron beam is visualized by scanning the delay time between laser pulses irradiating the needle and a laser pulse focused near the capillary tip.  相似文献   

18.
We demonstrate laser nitrogen isotope separation, which is based on field-free alignment and angular-dependent ionization of 14N2 and 15N2 isotopologues. A linearly polarized short laser pulse (???~?795?nm, ?????~?60?fs) creates rotational wave packets in the isotopologues, which periodically revive with different revival times as a result of different moments of inertia. Another linearly polarized short laser pulse (???~?795?nm, ?????~?60?fs) ionizes one of the isotopologues selectively as a result of their different angular distributions. In the present experiments, the ion yield ratio R [=I(15N2 +)/I(14N2 +)] can be changed in the range from 0.85 to 1.22, depending on the time delay between the two laser pulses.  相似文献   

19.
A theory of thermonuclear fusion caused by the irradiation of deuterium-iodide clusters with the field of a superatomic femtosecond laser pulse is developed. It is based on considering the process in which the sequential above-barrier multiple internal ionization of atomic ions within a cluster is accompanied by external field ionization. The theory is illustrated by taking the example of a cluster that is formed by 106 molecules of deuterium iodide and which is irradiated with a laser pulse of duration 50 fs and intensity 2×1018 W/cm2 at the peak. This case is dominated by I26+ atomic ions. The yield of neutrons from thermonuclear fusion in a deuteron-deuteron collision upon the passage of a laser pulse is calculated. The result is 105 neutrons per laser pulse. The mean kinetic energy of deuterons is estimated at 50 keV. Owing to induced inverse bremsstrahlung in scattering on multiply charged atomic ions, the electron temperature increases up to 28 keV. The role of the Mie resonance in the heating of the electron component is discussed.  相似文献   

20.
Large area (3 × 3 cm2) substrates for surface‐enhanced Raman scattering were fabricated by combining femtosecond laser microstructuring and soft lithography techniques. The fabrication procedure is as follows: (i) femtosecond laser machining is used to create a silicon master copy, (ii) replicates from polydimethylsiloxane are made, and (iii) a 50‐nm‐thick gold film is deposited on the surface of the replicates. The resulting substrates exhibit strongly enhanced absorption in the spectral region of 350 ∼ 1000 nm and generate enhanced Raman signal with enhancement factor of the order of 107 for 10‐ 6 M rhodamine 6G. The main advantages of our substrates are low cost, large active area, and possibility for mass replication. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号