首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 720 毫秒
1.
Effects of a new plasticizer, polysorbate 80, on the structural and electrochemical properties of PEO–NH4PF6 polymer electrolyte system have been investigated. X-ray diffraction studies show significant increase in amorphicity of the solid polymer electrolyte on introduction of the plasticizer, which is also supported by lesser-dense spherulites observed in the SEM micrographs. The room temperature ionic conductivity of the electrolyte shows an increase of about two orders of magnitude (σmax~10?5 S/cm) on plasticization. The frequency dependence of the conductivity has been found to obey the Jonscher’s power law and slower backward ion hopping on plasticization. The polymer electrolyte shows protonic conduction as confirmed using cyclic voltammetry study. The studies show that polysorbate 80 is a promising plasticizer for semicrystalline polymer electrolytes.  相似文献   

2.
Plasticized polymer electrolyte composite has been prepared in the form of a film by solution casting method. Poly (ethyl methacrylate) (PEMA) acts as a host polymer and is doped with Sodium Iodide (NaI). Ethylene carbonate (EC) added as a plasticizer and also enhances amorphicity of the polymer electrolyte. The electrical conductivity of the PEMA+NaI was evaluated using complex impedance spectroscopy. Maximum ionic conductivity obtained at room temperature was 8.75 × 10?6 S/cm with the composition of PEMA: NaI (30%) + 60% EC. The conductivity further increased with increase in temperature and moved up to 5.8 × 10?5 S/cm. Scanning electron microscopy was used to study the surface morphology of the composite film. Fourier transform infrared ray and X-ray diffraction data confirmed the complexation of material.  相似文献   

3.
The solid polymer electrolyte films based on polyethylene oxide, NaClO4 with dodecyl amine modified montmorillonite as filler, and polyethylene glycol as plasticizer were prepared by a tape casting method. The effect of plasticization on structural, microstructural, and electrical properties of the materials has been investigated. A systematic change in the structural and microstructural properties of plasticized polymer nanocomposite electrolytes (PPNCEs) on addition of plasticizer was observed in our X-ray diffraction pattern and scanning electron microscopy micrographs. Complex impedance analysis technique was used to calculate the electrical properties of the nanocomposites. Addition of plasticizer has resulted in the lowering of the glass transition temperature, effective dissociation of the salt, and enhancement in the electrical conductivity. The maximum value of conductivity obtained was ∼4.4 × 10−6 S cm−1 (on addition of ∼20% plasticizer), which is an order of magnitude higher than that of pure polymer nanocomposite electrolyte films (2.82 × 10−7 S cm−1). The enhancement in conductivity on plasticization was well correlated with the change in other physical properties.  相似文献   

4.
Biodegradable polymer electrolyte comprising the blend of chitosan (CS) and poly(ethylene glycol) (PEG) plasticized with ethylene carbonate and propylene carbonate, as host polymer, and lithium perchlorate (LiClO4), as a dopant, was prepared by solution casting technique. The ionic conductivity has been calculated using the bulk impedance obtained through impedance spectroscopy. The variation of conductivity and dielectric properties has been investigated as a function of polymer blend ratio, plasticizer content and LiClO4 concentration at temperature range of 298–343 K. The DSC thermograms show two broad peaks for CS/PEG blend and increased with increase in the LiClO4 content. The maximum conductivity has been found to be 1.1?×?10?4 S cm?1 at room temperature for 70:30 (CS/PEG) concentration. The electric modulus of the electrolyte film exhibits a long tail feature indicative of good capacitance. The activation energy of all samples was calculated using the Arrhenius plot, and it has been found to be 0.12 to 0.38 eV. A carbon–carbon supercapacitor has been fabricated using this electrolyte, and its electrochemical characteristics and performance have been studied. The supercapacitor showed a fairly good specific capacitance of 47 F?g?1.  相似文献   

5.
The effect of a plasticizer dimethyl formamide (DMF) on the properties of a potassium ion conducting electrolyte based on polyvinyl chloride (PVC) complexed with potassium bromate (KBrO3) prepared using solution-cast technique was investigated. Various experimental techniques, such as electrical conductivity (composition and temperature dependence) and transport number measurements, were used to characterize these polymer electrolyte films. It was found that the addition of plasticizer (DMF) significantly improved the ionic conductivity. Transport number for K+ ion ranged from 0.95 to 0.97 depending on the composition and temperature. Electrochemical cells of configuration K/PVC+KBrO3/(I2+C+electrolyte) and K/PVC+KBrO3+plasticizer/(I2+C+electrolyte) were fabricated. The discharge characteristics of the cells were studied under a constant load of 100 kΩ. The open-circuit voltage, short-circuit current, and discharge time for the plateau region were measured. The PVC+KBrO3 polymer electrolyte system with added plasticizer showed an increased discharge time with respect to pure PVC+KBrO3 electrolyte system. The features of complexation of the electrolytes were studied by X-ray diffraction.  相似文献   

6.
Polyethylene oxide–polymethyl methacrylate (PEO–PMMA) polymer blend electrolyte system complexed with silver salt having different ethylene carbonate (EC) concentrations was prepared using solution cast technique. Complex formation and change in structural and microstructural properties have been studied by X-ray diffraction, Fourier transform infrared, and scanning electron microscopy analysis. The thermal properties of polymer films have been examined by the differential scanning calorimetry technique. Addition of plasticizer is observed to lower melting temperature. Electrical response of polymer films has been measured as a function of EC concentration and temperature using complex impedance spectroscopy. Complex impedance data are used to analyze the conductivity, permittivity, and modulus formalism to understand the conduction mechanism. The temperature dependence of electrical conductivity of polymer electrolytes shows a sudden rise at the melting temperature of PEO.  相似文献   

7.
Solid polymer electrolytes have attracted considerable attention due to their wide variety of electrochemical device applications. The present paper is focused on the effect of plasticizer to study the structural, electrical and dielectric properties of PVA-H3PO4 complex polymer electrolytes. XRD results show that the crystallinity decreases due to addition of plasticizer up to particular amount of polyethylene glycol (PEG) and thereafter it increases. Consequently, there is an enhancement in the amorphicity of the samples responsible for process of ion transport. This characteristic behavior can be verified by the analysis of the differential scanning calorimetry results. FTIR spectroscopy has been used to characterize the structure of polymer and confirms the complexation of plasticizer with host polymeric matrix. Electrical and dielectric properties have been studied for different wt% of plasticizer and their variations have been observed. The addition of PEG has significantly improved the ionic conductivity. The optimum ionic conductivity value of the plasticized polymer electrolyte film of 30 wt% PEG has been achieved to be of the order of 10−4 S cm−1 at room temperature and corresponding ionic transference number is 0.98. The minimum activation energy is found to be 0.25 eV for optimum conductivity condition.  相似文献   

8.
Manoj Kumar  S. S. Sekhon 《Ionics》2002,8(3-4):223-233
The effect of different plasticizers on the properties of PEO-NH4F polymer electrolytes has been studied. Aprotic organic solvents like propylene carbonate (PC), ethylene carbonate (EC), γ-butyrolactone (γ-BL), dimethylacetamide (DMA), dimethylformamide (DMF), diethylcarbonate (DEC) and dimethylcarbonate (DMC) having different values of donor number, dielectric constant, viscosity etc. have been used as plasticizers in the present study. The addition of plasticizer has been found to modify the conductivity of polymer electrolytes by increasing the amorphous content as well as by dissociating the ion aggregates present in polymer electrolytes at higher salt concentrations. The conductivity enhancement with different plasticizers has been found to be closely related to the donor number of the plasticizer used rather than its dielectric constant. The increase in conductivity with the addition of plasticizer has further been found to be dependent upon the level of ion association present in the electrolytes. The variation of conductivity as a function of plasticizer concentration and temperature has also been studied and maximum conductivity of ∼ 10−3 S /cm at room temperature has been obtained. X-ray diffraction studies show an increase of amorphous content in polymer electrolytes with the addition of plasticizers.  相似文献   

9.
Dr. S. Rajendran  T. Uma 《Ionics》2000,6(3-4):288-293
The preparation and characterization of PVC-PMMA-LiBF4/LiAsF6-DBP composite polymer electrolytes for different concentrations of ZrO2 have been investigated. FTIR studies indicate complex formation between the polymers, salt and plasticizer. The electrical conductivity values measured by ac impedance spectroscopy were found to depend upon the ZrO2 concentration. The temperature dependence of the conductivity of the polymer films seems to obey the VTF relation. The conductivity values are presented and the results are discussed.  相似文献   

10.
The preparation and characterization of composite polymer electrolytes of PMMA-LiClO4-DMP for different concentrations of CeO2 have been investigated. FTIR studies indicate complex formation between the polymer, salt and plasticizer. The electrical conductivity values measured by a.c. impedance spectroscopy are found to depend upon the CeO2 concentration. The temperature dependence of the conductivity of the polymer films seems to obey the VTF relation. The conductivity values are presented and the results are discussed.  相似文献   

11.
The plasticized polymer electrolyte composed of polyvinylchloride (PVC) and polyvinylidene fluoride (PVdF) as host polymer, the mixture of ethylene carbonate and propylene carbonate as plasticizer, and LiCF3SO3 as a salt was studied. The effect of the PVC-to-PVdF blend ratio with the fixed plasticizer and salt content on the ionic conduction was investigated. The electrolyte films reveal a phase-separated morphology due to immiscibility of the PVC with plasticizer. Among the three blend ratios studied, 3:7 PVC–PVdF blend ratio has shown enhanced ionic conductivity of 1.47 × 10−5 S cm−1 at ambient temperature, i.e., the ionic conductivity decreased with increasing PVC-to-PVdF ratio and increased with increasing temperature. A temperature dependency on ionic conductivity obeys the Arrhenius behavior. The melting endotherms corresponding to vinylidene (VdF) crystalline phases are observed in thermal analysis. Thermal study reveals the different levels of uptake of plasticizer by VdF crystallites. The decrease in amorphousity with increase in PVC in X-ray diffraction studies and larger pore size appearance for higher content of PVC in scanning electron microscopy images support the ionic conductivity variations with increase in blend ratios.  相似文献   

12.
Nanocomposite polymer electrolytes (NCPEs) composed of poly(vinylidenefluoride-co-hexafluoropropylene) (PVdF-co-HFP) as a host polymer, Poly(vinyl acetate) (PVAc) as an additive, Ethylene Carbonate (EC) as a plasticizer, Lithium Perchlorate as dopant salt and Barium Titanate (BaTiO3) as a filler were prepared for various concentrations of BaTiO3 using solvent casting technique. Thermal stability of the sample having maximum ionic conductivity was found using TG/DTA analysis. Nano composite polymer electrolytes were subjected to ac impedance analysis spectra for acquiring the ionic conductivity values at different temperature. Surface structure of the sample was analysed using scanning electron microscope and the complexations of samples were analysed using X-ray diffraction analysis. It was noted that the polymer electrolyte contains 8 wt. % of BaTiO3 showed maximum ionic conductivity than the other ratios of BaTiO3.  相似文献   

13.
Proton-conducting polymer electrolytes based on biopolymer, agar-agar as the polymer host, ammonium bromide (NH4Br) as the salt and ethylene carbonate (EC) as the plasticizer have been prepared by solution casting technique with dimethylformamide as solvent. Addition of NH4Br and EC with the biopolymer resulted in an increase in the ionic conductivity of polymer electrolyte. EC was added to increase the degree of salt dissociation and also ionic mobility. The highest ionic conductivity achieved at room temperature was for 50 wt% agar/50 wt% NH4Br/0.3% EC with the conductivity 3.73?×?10?4 S cm?1. The conductivity of the polymer electrolyte increases with the increase in amount of plasticizer. The frequency-dependent conductivity, dielectric permittivity (ε′) and modulus (M′) studies were carried out.  相似文献   

14.
Dispersal of nanofillers in polymer electrolytes have shown to improve the ionic properties of Polyethylene oxide (PEO)-based polymer electrolytes in recent times. The effects of different nanoferrite fillers (i.e., Al–Zn ferrite, Mg–Zn ferrite, and Zn ferrite) on the electrical transport properties have been studied here on the composite polymer electrolyte system. The interaction of salt/filler with electrolyte has been investigated by XRD studies. SEM image and infrared spectral studies give an indication of nanocomposite formation. In conductivity studies, all electrolyte systems are seen to follow universal power law. Composition dependence (with ferrite filler) gives the maximum conductivity in [93PEO–7NH4SCN]: X ferrite (where X?=?2% in Al–Zn ferrite, 1% Mg–Zn ferrite, and 1% Zn ferrite) system.  相似文献   

15.
De-Jiang Qi  Hong-Qiang Ru  Xiao-Guo Bi 《Ionics》2013,19(11):1573-1578
A novel solid-state composite polymer electrolyte (CPE), based on a polymer, poly(ethylene oxide) (PEO), alkali metal salts, and NaY molecular sieve powders with a small amount of low molecular weight plasticizer, ethylene carbonate (EC) is investigated. (PEO)16LiClO4 polymer metal salt complexes with 5 wt% EC, and different content of NaY are prepared by the solution casting technology. The crystallization characteristic, surface morphology, and ionic conductivity of the CPE systems are studied using X-ray diffractometer (XRD) analysis, scanning electron microscopy (SEM), energy dispersive spectrometer, and impedance spectroscopy. It is found that NaY incorporation has a beneficial effect on the enhancement of ionic conductivity, increasing two orders of magnitude. XRD spectra show that the NaY has a major influence on the crystallization process of polymer matrix. By incorporating NaY, the crystallinity degree of PEO matrix obviously decreases. SEM images show a dramatic modification of surface morphology, the surface spherulites of polymer matrix disappear, and ultra-branched and cross-linked framework structure forms, which play an important role in ion transport and enhancing the tensile strength (TS). The TS is achieved 2.12 MPa with the content of 35 wt% NaY, far higher than the 0.17 MPa with (PEO)16LiClO4–5 wt% EC. In addition, it is demonstrated for the first time that EC affects the network structure of the molecular sieve and leads to exhibit enhanced ionic conductivity of electrolyte maintaining for a long time.  相似文献   

16.
《Current Applied Physics》2015,15(2):135-143
Solid polymer electrolytes consisted of poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) blend (50:50 wt/wt%) with lithium triflate (LiCF3SO3) as a dopant ionic salt at stoichiometric ratio [EO + (CO)]:Li+ = 9:1, poly(ethylene glycol) (PEG) as plasticizer (10 wt%) and montmorillonite (MMT) clay as nanofiller (3 wt%) have been prepared by solution cast followed by melt–pressing method. The X–ray diffraction study infers that the (PEO–PMMA)–LiCF3SO3 electrolyte is predominantly amorphous, but (PEO–PMMA)–LiCF3SO3–10 wt% PEG electrolyte has some PEO crystalline cluster, whereas (PEO–PMMA)–LiCF3SO3–10 wt% PEG–3 wt% MMT electrolyte is an amorphous with intercalated and exfoliated MMT structures. The complex dielectric function, ac electrical conductivity, electric modulus and impedance spectra of these electrolytes have been investigated over the frequency range 20 Hz to 1 MHz. These spectra have been analysed in terms of the contribution of electrode polarization phenomenon in the low frequency region and the dynamics of cations coordinated polymer chain segments in the high frequency region, and also their variation on the addition of PEG and MMT in the electrolytes. The temperature dependent dc ionic conductivity, dielectric relaxation time and dielectric strength of the plasticized nanocomposite electrolyte obey the Arrhenius behaviour. The mechanism of ions transportation and the dependence of ionic conductivity on the segmental motion of polymer chain, dielectric strength, and amorphicity of these electrolytes have been explored. The room temperature ionic conductivity values of the electrolytes are found ∼10−5 S cm−1, confirming their use in preparation of all-solid-state ion conducting devices.  相似文献   

17.
Ion-conducting polymer electrolyte films based on a copolymer poly(methyl-methacrylate-co-4-vinyl pyridine N-oxide) [P(MMA-CO-4VPNO)] complexed with potassium chlorate (KClO3) were prepared by solution cast technique. The complexation of KClO3 salt with the polymer was confirmed by X-ray diffraction and infrared studies. The electrical conductivity and optical absorption of pure and KClO3-doped P(MMA-CO-4VPNO) polymer electrolyte films have been studied. The electrical conductivity increased with increasing dopant concentration, which is attributed to the formation of charge transfer complexes. The variation of electrical conductivity with temperature shows two regions with two activation energies. Optical properties like direct band gap, indirect band gap, and optical absorption edge were investigated for pure and doped polymer films in the wavelength range 300–550 nm. It was found that the energy gaps and band edge values shifted to lower energies on doping. The behavior is in an agreement with the activation energies obtained from the conductivity data.  相似文献   

18.
Poly(vinylidene fluoride)-based polymer electrolytes using ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsufonyl)imide as the plasticizer were prepared by solution casting method. The effects of the solvent evaporation temperature (SET) and ionic liquid content (ILC) on the properties and structures of the polymer electrolytes were investigated by characterization of scanning electron microscope (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry, as well as mechanical and ionic conductivity test. It was confirmed that both SET and ILC had significant influence on the morphology, degree of crystallinity, mechanical properties, and ionic conductivity of the prepared polymer electrolytes. With ILC of 40 %, an excellent polymer electrolyte can be obtained at SET of 60 °C, which exhibited ionic conductivity up to ca. 10?4 S/cm at room temperature, accompanied by excellent tensile strength of 22.8 MPa and elongation at break of 540 %.  相似文献   

19.
The plasticized polymer electrolyte consisting of poly(epichlorohydrin-ethyleneoxide) [P(ECH-EO)], lithium perchlorate (LiClO4) and γ-butyrolactone (γ-BL) have been prepared by simple solution casting technique. The polymer–salt–plasticizer complex has been confirmed by XRD analysis. The ionic conductivity studies have been carried out using AC impedance technique. The effect of plasticizer (γ-BL) on ionic conductivity has been discussed with respect to different temperatures. The maximum value of ionic conductivity is found to be 1.3 × 10−4 Scm−1 for 70P(ECH-EO):15γ-BL:15LiClO4 at 303 K. The temperature dependence of the plasticized polymer electrolyte follows the Vogel–Tamman–Fulcher formalism. The activation energy is found to decrease with the increase in plasticizer.  相似文献   

20.
The conductivity and dielectric response of poly(ethylene oxide) (PEO) based plasticized polymer electrolyte systems were studied in the broad frequency range from 5 Hz to 1.8 GHz and in the temperature range from 248 K to 353 K. Propylene carbonate (PC) and ethylene carbonate (EC) were used as conventional plasticizers while poly(perfluorinated ethylene methylene oxide) (M03) was used as a new type of plasticizer. PEO-LiN(CF3SO2)2 plasticized with M03 shows high enough conductivity values to be used as electrolyte in rechargeable lithium polymer batteries. At high frequency a dielectric relaxation is observed for pure PEO as well as for the salt containing systems in the GHz region that is assumed to be due to segmental motion of the polymer chains. In the salt containing systems, this relaxation is shifted to lower frequencies relative to that of pure PEO, this is attributed to transient cross-linking. However, at lower frequencies another dielectric response peak was detected in all samples containing salts. The effect of the plasticizer on this relaxation is complex. Paper presented at the 6th Euroconference on Solid State Ionics, Cetraro, Calabria, Italy, Sept. 12–19, 1999.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号