首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Reactions of rhenium chalcobromides Cs4[{Re6(mu3-S)8}Br6].2H2O, Cs3[{Re6(mu3-Se)8}Br6].2H2O, Cs3[{Re6(mu3-Q)7(mu3-Br)}Br6].H2O (Q = S, Se), and K2[{Re6(mu3-S)6(mu3-Br)2}Br6] with molten triphenylphosphine (PPh3) have resulted in a family of novel molecular hybrid inorganic-organic cluster compounds. Six octahedral rhenium cluster complexes containing PPh3 ligands with general formula [{Re6(mu3-Q)8-n(mu3-Br)n}(PPh3)4-nBrn+2] (Q = S, n = 0, 1, 2; Q = Se, n = 0, 1) have been synthesized and characterized by X-ray single-crystal diffraction and elemental analyses, 31P{1H} NMR, luminescent measurements, and quantum-chemical calculations. It was found that the number of terminal PPh3 ligands in the complexes is controlled by the composition and consequently by the charge of the cluster core {Re6Q8-nBrn}n+2. In crystal structures of the complexes with mixed chalcogen/bromine ligands in the cluster core all positions of a cube [Q8-nBrn] are ordered and occupied exclusively by Q or Br atoms. Luminescence characteristics of the compounds trans-[{Re6Q8}(PPh3)4Br2] and fac-[{Re6Se7Br}(PPh3)3Br3] (Q = S, Se) have been investigated in CH2Cl2 solution and the broad emission spectra in the range of 600-850 nm were observed.  相似文献   

2.
The A(2)M(4)U(6)Q(17) compounds Rb(2)Pd(4)U(6)S(17), Rb(2)Pd(4)U(6)Se(17), Rb(2)Pt(4)U(6)Se(17), Cs(2)Pd(4)U(6)S(17), Cs(2)Pd(4)U(6)Se(17), and Cs(2)Pt(4)U(6)Se(17) were synthesized by the high-temperature solid-state reactions of U, M, and Q in a flux of ACl or Rb(2)S(3). These isostructural compounds crystallize in a new structure type, with two formula units in the tetragonal space group P4/mnc. This structure consists of a network of square-planar MQ(4), monocapped trigonal-prismatic UQ(7), and square-antiprismatic UQ(8) polyhedra with A atoms in the voids. Rb(2)Pd(4)U(6)S(17) is a typical semiconductor, as deduced from electrical resistivity measurements. Magnetic susceptibility and specific heat measurements on single crystals of Rb(2)Pd(4)U(6)S(17) show a phase transition at 13 K, the result either of antiferromagnetic ordering or of a structural phase transition. Periodic spin-polarized band structure calculations were performed on Rb(2)Pd(4)U(6)S(17) with the use of the first principles DFT program VASP. Magnetic calculations included spin-orbit coupling. With U f-f correlations taken into account within the GGA+U formalism in calculating partial densities of states, the compound is predicted to be a narrow-band semiconductor with the smallest indirect and direct band gaps being 0.79 and 0.91 eV, respectively.  相似文献   

3.
Mechanochemical reaction of cluster coordination polymers 1infinity[M3Q7Br4] (M = Mo, W; Q = S, Se) with solid K2C2O4 leads to cluster core excision with the formation of anionic complexes [M3Q7(C2O4)3]2-. Extraction of the reaction mixture with water followed by crystallization gives crystalline K2[M3Q7(C2O4)3].0.5KBr.nH2O (M = Mo, Q = S, n = 3 (1); M = Mo, Q = Se, n = 4 (2); M = W, Q = S, n = 5 (3)). Cs2[Mo3S7(C2O4)3].0.5CsCl.3.5H2O (4) and (Et4N)1.5H0.5K{[Mo3S7(C2O4)3]Br}.2H2O (5) were also prepared. Close Q...Br contacts result in the formation of ionic triples {[M3Q7(C2O4)3](2)Br}5- in 1-4 and the 1:1 adduct {[Mo3S7(C2O4)3]Br}3- in 5. Treatment of 1 or 2 with PPh(3) leads to chalcogen abstraction with the formation of [Mo3(mu3-Q)(mu2-Q)3(C2O4)3(H2O)3]2-, isolated as (Ph4P)2[Mo3(mu3-S)(mu2-S)3(C2O4)3(H2O)3].11H2O (6) and (Ph4P2[Mo3(mu3-Se)(mu2-Se)3(C2O4)3(H2O)3].8.5H2O.0.5C2H5OH (7). All compounds were characterized by X-ray structure analysis. IR, Raman, electronic, and 77Se NMR spectra are also reported. Thermal decomposition of 1-3 was studied by thermogravimetry.  相似文献   

4.
Black prisms of Np(3)Q(5) (Q = S, Se) have been synthesized by the stoichiometric reactions between Np and Q at 1173 K in a CsCl flux. The structures of these compounds were characterized by single-crystal X-ray diffraction methods. The Np(3)Q(5) compounds are isostructural with U(3)Q(5). The structure of Np(3)Q(5) is constructed from layers of Np(1)Q(8) distorted bicapped trigonal prisms that share faces with each other on bc planes. Each Np(1)Q(8) layer further shares Q(2) edges with two adjacent identical neighbors to form a three-dimensional framework. The space inside each channel within this framework is filled by one single edge-sharing Np(2)Q(7) distorted 7-octahedron chain running along the b axis. Magnetic susceptibility measurements show that Np(3)S(5) and Np(3)Se(5) have antiferromagnetic orderings at 35(1) and 36(1) K, respectively. Above the magnetic ordering temperatures, both Np(3)S(5) and Np(3)Se(5) behave as typical Curie-Weiss paramagnets. The effective moments obtained from the fit of the magnetic data to a modified Curie-Weiss law over the temperature range 70 to 300 K are 2.7(2) μ(B) (Np(3)S(5)) and 2.9(2) μ(B) (Np(3)Se(5)).  相似文献   

5.
Huang FQ  Ibers JA 《Inorganic chemistry》2001,40(10):2346-2351
The alkali metal/group 4 metal/polychalcogenides Cs(4)Ti(3)Se(13), Rb(4)Ti(3)S(14), Cs(4)Ti(3)S(14), Rb(4)Hf(3)S(14), Rb(4)Zr(3)Se(14), Cs(4)Zr(3)Se(14), and Cs(4)Hf(3)Se(14) have been synthesized by means of the reactive flux method at 823 or 873 K. Cs(4)Ti(3)Se(13) crystallizes in a new structure type in space group C(2)(2)-P2(1) with eight formula units in a monoclinic cell at T = 153 K of dimensions a = 10.2524(6) A, b = 32.468(2) A, c = 14.6747(8) A, beta = 100.008(1) degrees. Cs(4)Ti(3)Se(13) is composed of four independent one-dimensional [Ti(3)Se(13)(4-)] chains separated by Cs(+) cations. These chains adopt hexagonal closest packing along the [100] direction. The [Ti(3)Se(13)(4-)] chains are built from the face- and edge-sharing of pentagonal pyramids and pentagonal bipyramids. Formal oxidation states cannot be assigned in Cs(4)Ti(3)Se(13). The compounds Rb(4)Ti(3)S(14), Cs(4)Ti(3)S(14), Rb(4)Hf(3)S(14), Rb(4)Zr(3)Se(14), Cs(4)Zr(3)Se(14), and Cs(4)Hf(3)Se(14) crystallize in the K(4)Ti(3)S(14) structure type with four formula units in space group C(2)(h)()(6)-C2/c of the monoclinic system at T = 153 K in cells of dimensions a = 21.085(1) A, b = 8.1169(5) A, c = 13.1992(8) A, beta = 112.835(1) degrees for Rb(4)Ti(3)S(14);a = 21.329(3) A, b = 8.415(1) A, c = 13.678(2) A, beta = 113.801(2) degrees for Cs(4)Ti(3)S(14); a = 21.643(2) A, b = 8.1848(8) A, c = 13.331(1) A, beta = 111.762(2) degrees for Rb(4)Hf(3)S(14); a = 22.605(7) A, b = 8.552(3) A, c = 13.880(4) A, beta = 110.919(9) degrees for Rb(4)Zr(3)Se(14); a = 22.826(5) A, b = 8.841(2) A, c = 14.278(3) A, beta = 111.456(4) degrees for Cs(4)Zr(3)Se(14); and a = 22.758(5) A, b = 8.844(2) A, c = 14.276(3) A, beta = 111.88(3) degrees for Cs(4)Hf(3)Se(14). These A(4)M(3)Q(14) compounds (A = alkali metal; M = group 4 metal; Q = chalcogen) contain hexagonally closest-packed [M(3)Q(14)(4-)] chains that run in the [101] direction and are separated by A(+) cations. Each [M(3)Q(14)(4-)] chain is built from a [M(3)Q(14)] unit that consists of two MQ(7) pentagonal bipyramids or one distorted MQ(8) bicapped octahedron bonded together by edge- or face-sharing. Each [M(3)Q(14)] unit contains six Q(2)(2-) dimers, with Q-Q distances in the normal single-bond range 2.0616(9)-2.095(2) A for S-S and 2.367(1)-2.391(2) A for Se-Se. The A(4)M(3)Q(14) compounds can be formulated as (A(+))(4)(M(4+))(3)(Q(2)(2-))(6)(Q(2-))(2).  相似文献   

6.
The conversions of hexahydroxo rhenium cluster complexes [Re6Q8(OH)6]4- (Q=S, Se) in aqueous solutions in a wide pH range were investigated by chemical methods and spectroscopic measurements. Dependences of the spectroscopic and excited-state properties of the solutions on pH have been studied in detail. It has been found that a pH decrease of aqueous solutions of the potassium salts K4[Re6Q8(OH)6].8H2O (Q=S, Se) results in the formation of aquahydroxo and hexaaqua cluster complexes with the general formula [Re6Q8(H2O)n(OH)6-n]n-4 that could be considered as a result of the protonation of the terminal OH- ligands in the hexahydroxo complexes. The compounds K2[Re6S8(H2O)2(OH)4].2H2O (1), [Re6S8(H2O)4(OH)2].12H2O (2), [Re6S8(H2O)6][Re6S6Br8].10H2O (3), and [Re6Se8(H2O)4(OH)2] (4) have been isolated and characterized by X-ray single-crystal diffraction and elemental analyses and infrared (IR) spectroscopy. In crystal structures of the aquahydroxo complexes, the cluster units are connected to each other by an extensive system of very strong hydrogen bonds between terminal ligands.  相似文献   

7.
Oh GN  Choi ES  Ibers JA 《Inorganic chemistry》2012,51(7):4224-4230
Nine compounds from the series A(2)M(3)UQ(6) (A = K or Rb or Cs; M = Pd or Pt; Q = S or Se) were synthesized by reacting U, M, and Q in ACl or A(2)Q(x) fluxes. These compounds crystallize with eight formula units in the NaBa(2)Cu(3)O(6) structure type, in space group Fmmm of the orthorhombic system. The structure contains hexagons formed from six edge-sharing square-planar coordinated M atoms, which in turn edge-share with trigonal-prismatically coordinated U atoms, forming layers along (010). These layers are separated by A atoms. Electrical resistivity measurements along the [100] direction of Rb(2)Pd(3)US(6) show typical semiconductor behavior. Magnetic susceptibility measurements on Rb(2)Pd(3)US(6) display marked magnetic anisotropy and unusually low magnetic moments owing to crystalline electric field effects.  相似文献   

8.
Orange crystals of Cs(4)Th(4)P(4)Se(26) were grown from the reaction of (232)Th and P in a Cs(2)Se(3)/Se molten salt flux at 750 degrees C. Cs(4)Th(4)P(4)Se(26) crystallizes in the orthorhombic space group Pbca with the unit cell parameters: a = 12.0130(6), b = 14.5747(7), c = 27.134(1) A; Z = 8. The compound exhibits a three-dimensional structure, consisting of dimeric [Th(2)Se(13)] polyhedral units. The two crystallographically independent, nine-coordinate, bicapped trigonal prismatic thorium atoms share a triangular face to form the dimer, and each dimer edge-shares two selenium atoms with two other dimers to form kinked chains along the [010] direction. While this structure shares features of the previously reported Rb(4)U(4)P(4)Se(26), including phosphorus in the 5+ oxidation state, careful inspection of the structure reveals that the selenophosphate anion that knits the structure together in three directions in both compounds is a unique (P(2)Se(9))(6-) anion. The formula may be described best as [Cs(2)Th(2)(P(2)Se(9))(Se(2))(2)](2). The (P(2)Se(9))(6-) anion features a nearly linear Se-Se-Se backbone with an angle of 171 degrees and Se-Se distances that are approximately 0.2-0.3 A longer than the typical single Se-Se bond. Magnetic studies confirm that this phase contains Th(IV). Raman data for this compound is reported, and structural comparisons will be drawn to its uranium analogue, Rb(4)U(4)P(4)Se(26).  相似文献   

9.
Gaunt AJ  Scott BL  Neu MP 《Inorganic chemistry》2006,45(18):7401-7407
Treatment of uranium metal with dichalcogenides in the presence of a catalytic amount of iodine in pyridine affords molecular U(IV) chalcogenolates that do not require stabilizing ancillary ligands. Oxidation of U(0) by PhEEPh yields monomeric seven-coordinate U(EPh)4(py)3 (E = S(1), Se(2)). The dimeric eight-coordinate complexes [U(EPh)2(mu2-EPh)2(CH3CN)2]2 (E = S(3), Se(4)) are obtained by crystallization from solutions of 1 and 2 dissolved in acetonitrile. Oxidation of U(0) by pySSpy and crystallization from thf yields nine-coordinate U(Spy)4(thf) (5). Incorporation of elemental selenium into the oxidation of U(0) by PhSeSePh results in the isolation of [U(py)2(SePh)(mu3-Se)(mu2-SePh)]4.4py (6), a tetrameric cluster in which each U(IV) ion is eight-coordinate and the U4Se4 core forms a distorted cube. The compounds were analyzed spectroscopically and the single-crystal X-ray structures of 1 and 3-6 were determined. The isolation of 1-6 represents six new examples of actinide chalcogenolates and allows insight into the nature of "hard" actinide ion-"soft" chalcogen donor interactions.  相似文献   

10.
Heating WTe(2), Te, and Br(2) at 390 degrees C followed by extraction with KCN gives [W(3)Te(7)(CN)(6)](2-). Crystal structures of double salts Cs(3.5)K{[W(3)Te(7)(CN)(6)]Br}Br(1.5).4.5H(2)O (1), Cs(2)K(4){[W(3)Te(7)(CN)(6)](2)Cl}Cl.5H(2)O (2), and (Ph(4)P)(3){[W(3)Te(7)(CN)(6)]Br}.H(2)O (3) reveal short Te(2)...X (X = Cl, Br) contacts. Reaction of polymeric Mo(3)Se(7)Br(4) with KNCSe melt gives [Mo(3)Se(7)(CN)(6)](2-). Reactions of polymeric Mo(3)S(7)Br(4) and Mo(3)Te(7)I(4) with KNCSe melt (200-220 degrees C) all give as final product [Mo(3)Se(7)(CN)(6)](2)(-) via intermediate formation of [Mo(3)S(4)Se(3)(CN)(6)](2-)/[Mo(3)SSe(6)(CN)(6)](2-) and of [Mo(3)Te(4)Se(3)(CN)(6)](2-), respectively, as was shown by ESI-MS. (NH(4))(1.5)K(3){[Mo(3)Se(7)(CN)(6)]I}I(1.5).4.5H(2)O (4) was isolated and structurally characterized. Reactions of W(3)Q(7)Br(4) (Q = S, Se) with KNCSe lead to [W(3)Q(4)(CN)(9)](5-). Heating W(3)Te(7)Br(4) in KCNSe melt gives a complicated mixture of W(3)Q(7) and W(3)Q(4) derivatives, as was shown by ESI-MS, from which E(3)[W(3)(mu(3)-Te)(mu-TeSe)(3)(CN)(6)]Br.6H(2)O (5) and K(5)[W(3)(mu(3)-Te)(mu-Se)(3)(CN)(9)] (6) were isolated. X-ray analysis of 5 reveals the presence of a new TeSe(2-) ligand. The complexes were characterized by IR, Raman, electronic, and (77)Se and (125)Te NMR spectra and by ESI mass spectrometry.  相似文献   

11.
The reaction of K(2)Sn(2)Q(5) (Q = S, Se, Te) with stoichiometric amounts of alkyl-ammonium bromides R(4)NBr (R = methyl or ethyl) in ethylenediamine (en) afforded the corresponding salts (R(4)N)(4)[Sn(4)Q(10)] (Q = S, Se, Te) in high yield. Although the compound K(2)Sn(2)Te(5) is not known, this reaction is also applicable to solids with a nominal composition "K(2)Sn(2)Te(5)" which in the presence of R(4)NBr in en are quantitatively converted to the salts (R(4)N)(4)[Sn(4)Te(10)] on a multigram scale. These salts contain the molecular adamantane clusters [Sn(4)Q(10)](4-) and can serve as soluble precursors in simple metathesis reactions with transition metal salts to synthesize the large family of open-framework compounds (Me(4)N)(2)M[Sn(4)Se(10)] (M = Mn(2+), Fe(2+), Co(2+), Zn(2+)). Full structural characterization of these materials as well as their magnetic and optical properties is reported. Depending on the transition metal in (Me(4)N)(2)M[Sn(4)Se(10)], the energy band gaps of these compounds lie in the range of 1.27-2.23 eV. (Me(4)N)(2)Mn[Ge(4)Te(10)] is the first telluride analogue to be reported in this family. This material is a narrow band gap semiconductor with an optical absorption energy of 0.69 eV. Ab initio electronic band structure calculations validate the semiconductor nature of these chalcogenides and indicate a nearly direct band gap.  相似文献   

12.
Wang C  Hughbanks T 《Inorganic chemistry》1996,35(24):6987-6994
The synthesis of the group IV ternary chalcogenides Zr(6)MTe(2) (M = Mn, Fe, Co, Ni, Ru, Pt) and Zr(6)Fe(1)(-)(x)()Q(2+)(x)() (Q = S, Se) is reported, as are the single-crystal structures of Zr(6)FeTe(2), Zr(6)Fe(0.6)Se(2.4), and Zr(6)Fe(0.57)S(2.43). The structure of Zr(6)FeTe(2) was refined in the hexagonal space group P&sixmacr;2m (No. 189, Z = 1) with lattice parameters a = 7.7515(5) ? and c = 3.6262(6) ?, and the structures of Zr(6)Fe(0.6)Se(2.4) and Zr(6)Fe(0.57)S(2.43) were refined in the orthorhombic space group Pnnm (No. 58, Z = 4) with lattice parameters a = 12.737(2) ?, b = 15.780(2) ?, and c = 3.5809(6) ? and a = 12.519(4) ?, b = 15.436(2) ?, and c = 3.4966(6) ?, respectively. The cell parameters of Mn-, Co-, Ni-, Ru-, and Pt-containing tellurides were also determined. The Zr(6)ZTe(2) compounds are isostructural with Zr(6)CoAl(2), while Zr(6)Fe(1)(-)(x)()Q(2+)(x)() (Q = S, Se) were found to adopt a variant of the Ta(2)P-type structure. Chains of condensed M-centered, tetrakaidecahedra of zirconium constitute the basic structural unit in all these compounds. The modes of cross-linking that give rise to the Zr(6)FeTe(2) and Zr(6)Fe(1)(-)(x)()Q(2+)(x)() structures, differences among the title compounds, and the influence of chalcogen size differences are discussed. The stoichiometric nature of Zr(6)FeTe(2) and its contrast with sulfur and selenium congeners apparently result from a Te-Fe size mismatch. The importance of stabilization of both Zr(6)FeSe(2) and Zr(6)FeTe(2) compounds by polar intermetallic Zr-Fe bonding is underscored by a bonding analysis derived from electronic band structure calculations.  相似文献   

13.
The rare-earth metal(III) oxide selenides of the formula La4O4Se[Se2], Ce4O4Se[Se2], Pr4O4Se[Se2], Nd4O4Se[Se2], and Sm4O4Se[Se2] were synthesized from a mixture of the elements with selenium dioxide as the oxygen source at 750 degrees C. Single crystal X-ray diffraction was used to determine their crystal structures. The isostructural compounds M4O4Se[Se2] (M=La, Ce, Pr, Nd, Sm) crystallize in the orthorhombic space group Amm2 with cell dimensions a=857.94(7), b=409.44(4), c=1316.49(8) pm for M=La; a=851.37(6), b=404.82(3), c=1296.83(9) pm for M=Ce; a=849.92(6), b=402.78(3), c=1292.57(9) pm for M=Pr; a=845.68(4), b=398.83(2), c=1282.45(7) pm for M=Nd; and a=840.08(5), b=394.04(3), c=1263.83(6) pm for M=Sm (Z=2). In their crystal structures, Se2- anions as well as [Se-Se]2- dumbbells interconnect {[M4O4]4+} infinity 2 layers. These layers are composed of three crystallographically different, distorted [OM4]10+ tetrahedra, which are linked via four common edges. The compounds exhibit strong Raman active modes at around 215 cm(-1), which can be assigned to the Se-Se stretching vibration. Optical band gaps for La4O4Se[Se2], Ce4O4Se[Se2], Pr4O4Se[Se2], Nd4O4Se[Se2], and Sm4O4Se[Se2] were derived from diffuse reflectance spectra. The energy values at which absorption takes place are typical for semiconducting materials. For the compounds M4O4Se[Se2] (M=La, Pr, Nd, Sm) the fundamental band gaps, caused by transitions from the valence band to the conduction band (VB-CB), lie around 1.9 eV, while for M=Ce an absorption edge occurs at around 1.7 eV, which can be assigned to f-d transitions of Ce3+. Magnetic susceptibility measurements of Ce4O4Se[Se2] and Nd4O4Se[Se2] show Curie-Weiss behavior above 150 K with derived experimental magnetic moments of 2.5 micro B/Ce and 3.7 micro B/Nd and Weiss constants of theta p=-64.9 K and theta p=-27.8 K for the cerium and neodymium compounds, respectively. Down to 1.8 K no long-range magnetic ordering could be detected. Thus, the large negative values for theta p indicate the presence of strong magnetic frustration within the compounds, which is due to the geometric arrangement of the magnetic sublattice in form of [OM4]10+ tetrahedra.  相似文献   

14.
Huang FQ  Ibers JA 《Inorganic chemistry》2001,40(11):2602-2607
The new compounds K(2)TiCu(2)S(4), Rb(2)TiCu(2)S(4), Rb(2)TiAg(2)S(4), Cs(2)TiAg(2)S(4), and Cs(2)TiCu(2)Se(4) have been synthesized by the reactions of A(2)Q(3) (A = K, Rb, Cs; Q = S, Se) with Ti, M (M = Cu or Ag), and Q at 823 K. The compounds Rb(2)TiCu(2)S(4), Cs(2)TiAg(2)S(4), and Cs(2)TiCu(2)Se(4) are isostructural. They crystallize with two formula units in space group P4(2)/mcm of the tetragonal system in cells of dimensions a = 5.6046(4) A, c = 13.154(1) A for Rb(2)TiCu(2)S(4), a =6.024(1) A, c = 13.566(4) A for Cs(2)TiAg(2)S(4), and a =5.852(2) A, c =14.234(5) A for Cs(2)TiCu(2)Se(4) at 153 K. Their structure is closely related to that of Cs(2)ZrAg(2)Te(4) and comprises [TiM(2)Q(4)(2)(-)] layers, which are separated by alkali metal atoms. The [TiM(2)Q(4)(2)(-)] layer is anti-fluorite-like with both Ti and M atoms tetrahedrally coordinated to Q atoms. Tetrahedral coordination of Ti(4+) is rare in the solid state. On the basis of unit cell and space group determinations, the compounds K(2)TiCu(2)S(4) and Rb(2)TiAg(2)S(4) are isostructural with the above compounds. The band gaps of K(2)TiCu(2)S(4), Rb(2)TiCu(2)S(4), Rb(2)TiAg(2)S(4), and Cs(2)TiAg(2)S(4) are 2.04, 2.19, 2.33, and 2.44 eV, respectively, as derived from optical measurements. From band-structure calculations, the optical absorption for an A(2)TiM(2)Q(4) compound is assigned to a transition from an M d and Q p valence band (HOMO) to a Ti 3d conduction band.  相似文献   

15.
The syntheses, crystal structures determined by single-crystal X-ray diffraction, and characterizations of new Mo(6) cluster chalcobromides and cyano-substituted compounds with 24 valence electrons per Mo(6) cluster (VEC = 24), are presented in this work. The structures of Cs(4)Mo(6)Br(12)S(2) and Cs(4)Mo(6)Br(12)Se(2) prepared by solid state routes are based on the novel [(Mo(6)Br(i)(6)Y(i)(2))Br(a)(6)](4)(-) (Y = S, Se) discrete units in which two chalcogen and six bromine ligands randomly occupy the inner positions, while the six apical ones are fully occupied by bromine atoms. The interaction of these two compounds with aqueous KCN solution results in apical ligand exchange giving the two first Mo(6) cyano-chalcohalides: Cs(0.4)K(0.6)(Et(4)N)(11)[(Mo(6)Br(6)S(2))(CN)(6)](3).16H(2)O and Cs(0.4)K(0.6)(Et(4)N)(11)[(Mo(6)Br(6)Se(2))(CN)(6)](3).16H(2)O. Their crystal structures, built from the original [(Mo(6)Br(i)(6)Y(i)(2))(CN)(a)(6)](4)(-) discrete units, will be compared to those of the two solid state precursors and other previously reported Mo(6) cluster compounds. Their redox properties and (77)Se NMR characterizations will be presented. Crystal data: Cs(4)Mo(6)Br(12)S(2), orthorhombic, Pbca (No. 61), a = 11.511(5) A, b = 18.772(5) A, c = 28.381 A (5), Z = 8; Cs(4)Mo(6)Br(12)Se(2), Pbca (No. 61), a = 11.6237(1) A, b = 18.9447(1) A, c = 28.4874(1) A, Z = 8; Cs(0.4)K(0.6)(Et(4)N)(11)[(Mo(6)Br(6)S(2))(CN)(6)](3).16H(2)O, Pm-3m (No. 221), a = 17.1969(4) A, Z = 1; Cs(0.4)K(0.6)(Et(4)N)(11)[(Mo(6)Br(6)Se(2))(CN)(6)](3).16H(2)O, Pm-3m (No. 221), a = 17.235(5) A, Z = 1.  相似文献   

16.
Four new quaternary selenides CsGdZnSe3, CsZrCuSe3, CsUCuSe3, and BaGdCuSe3 have been synthesized with the use of traditional high-temperature solid-state experimental methods. These compounds are isostructural with KZrCuS3, crystallizing with four formula units in the orthorhombic space group Cmcm. Cell constants (A) at 153 K are CsGdZnSe3 4.1684(7), 15.765(3), 11.0089(18); CsZrCuSe3 3.903(2), 15.841(10), 10.215(6); CsUCuSe3 4.1443(7), 15.786(3), 10.7188(18); and BaGdCuSe3 4.1839(6), 13.8935(19), 10.6692(15). The structure of these ALnMSe3 compounds (A = Cs, Ba; Ln = Zr, Gd, U; M = Cu, Zn) is composed of 2 to infinity [LnMSe3(n-)] (n = 1, 2) layers separated by A atoms. The Ln atom is octahedrally coordinated to six Se atoms, the M atom is tetrahedrally coordinated to four Se atoms, and the A atom is coordinated to a bicapped trigonal prism of eight Se atoms. Because there are no Se-Se bonds in the structure, the oxidation state of A is 1+ (Cs) or 2+ (Ba), that of Ln is 3+ (Gd) or 4+ (Zr, U), and that of M is 1+ (Cu) or 2+ (Zn). CsGdZnSe3 and BaGdCuSe3, which are paramagnetic, obey the Curie-Weiss law and have effective magnetic moments of 7.87(6) and 7.85(5) muB for Gd(3+), in good agreement with the theoretical value of 7.94 muB. Optical transitions at 1.88 and 2.92 eV for CsGdZnSe3 and 1.96 eV for BaGdCuSe3 were deduced from diffuse reflectance spectra.  相似文献   

17.
The complexes PtRu(5)(CO)(15)(PMe(2)Ph)(mu(6)-C) (2), PtRu(5)(CO)(14)(PMe(2)Ph)(2)(mu(6)-C) (3), PtRu(5)(CO)(15)(PMe(3))(mu(6)-C) (4), PtRu(5)(CO)(14)(PMe(3))(2)(mu(6)-C) (5), and PtRu(5)(CO)(15)(Me(2)S)(mu(6)-C) (6) were obtained from the reactions of PtRu(5)(CO)(16)(mu(6)-C) (1) with the appropriate ligand. As determined by NMR spectroscopy, all the new complexes exist in solution as a mixture of isomers. Compounds 2, 3, and 6 were characterized crystallographically. In all three compounds, the six metal atoms are arranged in an octahedral geometry, with a carbido carbon atom in the center. The PMe(2)Ph and Me(2)S ligands are coordinated to the Pt atom in 2 and 6, respectively. In 3, the two PMe(2)Ph ligands are coordinated to Ru atoms. In solution, all the new compounds undergo dynamical intramolecular isomerization by shifting the PMe(2)Ph or Me(2)S ligand back and forth between the Pt and Ru atoms. For compound 2, DeltaH++ = 15.1(3) kcal/mol, DeltaS++ = -7.7(9) cal/(mol.K), and DeltaG(298) = 17.4(6) kcal/mol for the transformation of the major isomer to the minor isomer; for compound 4, DeltaH++ = 14.0(1) kcal/mol, DeltaS++ = -10.7(4) cal/(mol.K), and DeltaG(298) = 17.2(2) kcal/mol for the transformation of the major isomer to the minor isomer; for compound 6, DeltaH++ = 18(1) kcal/mol, DeltaS++ = 21(5) cal/(mol.K) and DeltaG(298) = 12(2) kcal/mol. The shifts of the Me(2)S ligand in 6 are significantly more facile than the shifts for the phosphine ligand in compounds 2-5. This is attributed to a more stable ligand-bridged intermediate for the isomerizations of 6 than that for compounds 2-5. The intermediate for the isomerization of 6 involves a bridging Me(2)S ligand that can use two lone pairs of electrons for coordination to the metal atoms, whereas a tertiary phosphine ligand can use only one lone pair of electrons for bridging coordination.  相似文献   

18.
The crystal structures of the tetrahedral cluster compounds GaNb(4)S(8) and GaTa(4)Se(8) were determined by single-crystal X-ray diffraction. They crystallize in the cubic GaMo(4)S(8) structure type (F3m), which can be derived from the spinel type by shifting the metal atoms off the centers of the chalcogen octahedra along [111]. Electrical resistivity and magnetic susceptibility measurements show that the electronic conduction originates from hopping of localized unpaired electrons (S = (1)/(2)) among widely separated Nb(4) or Ta(4) clusters, and thus these materials represent a new class of Mott insulators. Under high pressure we find that GaNb(4)S(8) undergoes a transition from the Mott insulating to a superconducting state with T(C) up to 4 K at 23 GPa, similar to GaNb(4)Se(8) and GaTa(4)Se(8). High-pressure single-crystal X-ray studies of GaTa(4)Se(8) reveal that the superconducting transition is connected with a gradual decrease of the octahedral distortion with increasing pressure. DFT band structure calculations show that weakly coupled cluster orbitals are responsible for a high density of states at the Fermi level. The correct insulating magnetic ground state for GaNb(4)S(8) with mu(eff) = 1.73 mu(B) is for the first time achieved by the LDA+U method using U = 6 eV and rhombohedral symmetry.  相似文献   

19.
Reaction of the edge-bridged double cubane cluster [(Tp)(2)M(2)Fe(6)S(8)(PEt(3))(4)] (1; Tp = hydrotris(pyrazolyl)borate(1-)) with hydrosulfide affords the clusters [(Tp)(2)M(2)Fe(6)S(9)(SH)(2)](3)(-)(,4)(-) (M = Mo (2), V), which have been established as the first structural (topological) analogues of the P(N) cluster of nitrogenase. The synthetic reaction is an example of core conversion, resulting in the transformation M(2)Fe(6)(mu(3)-S)(6)(mu(4)-S)(2) (C(i)) --> M(2)Fe(6)(mu(2)-S)(2)(mu(3)-S)(6)(mu(6)-S) (C(2)(v)), the reaction pathway of which is unknown. The most prominent structural feature of P(N)-type clusters is the mu(6)-S atom, which bridges six iron atoms in two MFe(3)S(3) cuboidal halves of the cluster. The initial issue in core conversion is the origin of the mu(6)-S atom. Utilizing SeH(-) as a surrogate reactant for SH(-) in the system 1/SeH(-)/L(-) in acetonitrile, a series of selenide clusters [(Tp)(2)Mo(2)Fe(6)S(8)SeL(2)](3)(-) (L(-) = SH(-) (4), SeH(-) (5), EtS(-) (6), CN(-) (7)) was prepared. The electrospray mass spectra of 4 and 6 revealed inclusion of one Se atom in each cluster, and (1)H NMR spectra and crystallographic refinements of 4-7 indicated that this atom was disordered over the two mu(2)-S/Se positions. The clusters {[(Tp)(2)Mo(2)Fe(6)S(9)](mu(2)-S)}(2)(5)(-) (8) and {[(Tp)(2)Mo(2)Fe(6)S(8)Se](mu(2)-Se)}(2)(5)(-) (9) were prepared from 2 and 5, respectively, and shown to be isostructural. They consist of two P(N)-type cluster units bridged by two mu(2)-S or mu(2)-Se atoms. It is concluded that, in the preparation of 2, the probable structural fate of the attacking nucleophile is as a mu(2)-S atom, and that the mu(3)-S and mu(6)-S atoms of the product cluster derive from precursor cluster 1. Cluster fragmentation during P(N)-type cluster synthesis is unlikely.  相似文献   

20.
The quaternary K(x)Sn(6-2x)Bi(2+x)Se(9) and KSn(5)Bi(5)Se(13) were discovered from reactions involving K(2)Se, Bi(2)Se(3), Sn, and Se. The single crystal structures reveal that K(x)Sn(6-2x)Bi(2+x)Se(9) is isostructural to the mineral heyrovskyite, Pb(6)Bi(2)S(9), crystallizing in the space group Cmcm with a = 4.2096(4) A, b = 14.006(1) A, and c = 32.451(3) A while KSn(5)Bi(5)Se(13) adopts a novel monoclinic structure type (C2/m, a = 13.879(4) A, b = 4.205(1) A, c = 23.363(6) A, beta = 99.012(4) degrees ). These compounds formally belong to the lillianite homologous series xPbS.Bi(2)S(3), whose characteristic is derivation of the structure by tropochemical cell-twinning on the (311) plane of the NaCl-type lattice with a mirror as twin operation. The structures of K(x)Sn(6-2x)Bi(2+x)Se(9) and KSn(5)Bi(5)Se(13) differ in the width of the NaCl-type slabs that form the three-dimensional arrangement. While cell-twinning of 7 octahedra wide slabs results in the heyrovskyite structure, 4 and 5 octahedra wide slabs alternate in the structure of KSn(5)Bi(5)Se(13). In both structures, the Bi and Sn atoms are extensively disordered over the metal sites. Some physicochemical properties of K(x)Sn(6-2x)Bi(2+x)Se(9) and KSn(5)Bi(5)Se(13) are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号