首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structural properties of a 10 μm thick In-face InN film, grown on Al2O3 (0001) by radio-frequency plasma-assisted molecular beam epitaxy, were investigated by transmission electron microscopy and high resolution x-ray diffraction. Electron microscopy revealed the presence of threading dislocations of edge, screw and mixed type, and the absence of planar defects. The dislocation density near the InN/sapphire interface was 1.55×1010 cm−2, 4.82×108 cm−2 and 1.69×109 cm−2 for the edge, screw and mixed dislocation types, respectively. Towards the free surface of InN, the density of edge and mixed type dislocations decreased to 4.35×109 cm−2 and 1.20×109 cm−2, respectively, while the density of screw dislocations remained constant. Using x-ray diffraction, dislocations with screw component were found to be 1.2×109 cm−2, in good agreement with the electron microscopy results. Comparing electron microscopy results with x-ray diffraction ones, it is suggested that pure edge dislocations are neither completely randomly distributed nor completely piled up in grain boundaries within the InN film.  相似文献   

2.
Phosphorus-doped ZnO films were grown by pulsed laser deposition using a ZnO:P2O5-doped target as the phosphorus source with the aim of producing p-type ZnO material. ZnO:P layers (with phosphorus concentrations of between 0.01 to 1 wt%) were grown on a pure ZnO buffer layer. The electrical properties of the films were characterised from temperature dependent Hall-effect measurements. The samples typically showed weak n-type conduction in the dark, with a resistivity of 70 Ω cm, a Hall mobility of μn0.5 cm2 V −1 s−1 and a carrier concentration of n3×1017 cm−3 at room temperature. After exposure to an incandescent light source, the samples underwent a change in conduction from n- to p-type, with an increase in mobility and decrease in concentration for temperatures below 300 K.  相似文献   

3.
Investigations on Ni/Al alloys to form ohmic contacts to p-type 4H-SiC are presented in this paper. Different ratios of Ni/Al were examined. Rapid thermal annealing was performed in argon atmosphere at 400 C for 1 min, followed by an annealing at 1000 C for 2 min. In order to extract the specific contact resistance, TLM test structures were fabricated. A specific contact resistance of 3×10−5 Ω cm2 was obtained reproducibly on Al2+ implanted p-type layers, having a doping concentration of 1×1019 cm−3. The lowest specific contact resistance value measured amounts to 8×10−6 Ω cm2.  相似文献   

4.
Polycrystalline Ga-doped (Ga content: 4 wt%) ZnO (GZO) thin films were deposited on glass substrates at 200 C by a reactive plasma deposition with DC arc discharge technique. The dependences of structural and electrical properties of GZO films on thickness, ranging from 30 to 560 nm, were investigated. Carrier concentration, n, and Hall mobility, μ, increases with increasing film thickness below 100 nm, and then the n remains nearly constant and the μ gradually increases until the thickness reaches 560 nm. The resistivity obtained of the order of 10−4 Ω cm for these films decreases with increasing film thickness: The highest resistivity achieved is 4.4×10−4 Ω cm with n of 7.6×1020 cm−3 and μ of 18.5 cm2/V s for GZO films with a thickness of 30 nm and the lowest one is 1.8×10−4 Ω cm with n of 1.1×1021 cm−3 and μ of 31.7 cm2/V s for the GZO film with a thickness of 560 nm. X-ray diffraction pattern for all the films shows a hexagonal wurtzite structure with its strongly preferred orientation along the c-axis. Full width at half maximum of the (002) preferred orientation diffraction peak of the films decreases with increasing film thickness below 100 nm.  相似文献   

5.
Focused ion beam implantation of gallium and dysprosium was used to locally insulate the near-surface two-dimensional electron gas of AlxGa1−xN/GaN heterostructures. The threshold dose for insulation was determined to be 2×1010 cm−1 for 90 keV Ga+ and 1×109 cm−1 for 200 keV Dy2+ at 4.2 K. This offers a tool not only for inter-device insulation but also for direct device fabrication. Making use of “open-T” like insulating line patterns, in-plane gate transistors have been fabricated by focused ion beam implantation. An exemplar with a geometrical channel width of 1.5 μm shows a conductance of 32 μS at 0 V gate voltage and a transconductance of around 4 μS, which is only slightly dependent on the gate voltage.  相似文献   

6.
GaN has been grown using Si/N treatment growth by MOVPE on sapphire (0001) in a home-made vertical reactor. The growth was monitored by in situ laser reflectometry. The morphological, electrical and optical properties of GaN are investigated at all the growth stages. To this aim, the growth was interrupted at different stages. The obtained samples are ex situ characterized by scanning electron microscopy (SEM), room temperature Van der Pauw–Hall electrical transport and low temperature (13 K) photoluminescence (PL) measurements. The SEM images show clearly the coalescence process. A smooth surface is obtained for a fully coalesced layer. During the coalescence process, the electron concentration (n) and mobility (μ) vary from 2×1019 cm−3 to 2×1017 cm−3 and 12 cm2/V s–440 cm2/V s, respectively. The PL maxima shift to higher energy and the FWHM decreases to about 4 meV. A correlation between PL spectra and Hall effect measurements is made. We show that the FWHM follows a n2/3 power law for n above 1018 cm−3.  相似文献   

7.
Low resistance nonalloyed Al-based ohmic contacts on n-ZnO:Al   总被引:1,自引:0,他引:1  
We have investigated the electrical properties of nonalloyed Al, Al/Au, and Al/Pt ohmic contacts on n-type ZnO:Al (2×1018 cm−3). All Al-based nonalloyed ohmic contacts on the n-ZnO:Al reveal linear current–voltage behavior with low specific contact resistivity of 8.5×10−4 (Al), 8.0×10−5 (Al/Au) and 1.2×10−5 Ω cm2 (Al/Pt), respectively. Using secondary ion mass spectroscopy (SIMS) and x-ray photoelectron spectroscopy (XPS) depth profiles, it was found that the O atoms in the ZnO:Al layer outdiffused to Al metal layer while the Al atoms indiffused to the surface region of ZnO:Al. This interdiffusion between Al and O atoms at room temperature results in an increase of doping concentration in the surface region of the ZnO:Al and reduces a specific contact resistivity of the Al-based ohmic contacts without thermal annealing process.  相似文献   

8.
In the following, we report investigations of the dependencies of the structural, optical and electrical characteristics of InN thin films grown by MOCVD on the growth temperature. The layer thicknesses range from 70 to 400 nm. Their carrier concentrations range from 7×1018 to 4×1019 cm−3. Hall mobility values from 150 to 1300 cm2/V/s were determined in these films. The variation of the growth temperature and V/III ratio brought about different growth modes and rates. Using TEM, in addition to measuring layer thickness, we also determined the growth mode along with the structural quality of the InN layers. The surface roughness was obtained from AFM measurements. The layer crystalline quality was also investigated by means of X-ray diffraction in the rocking mode. Photoluminescence measurements performed at room temperature and at 7 K gave emission at around 0.7 eV.  相似文献   

9.
Transparent p-type thin films, containing zinc oxide phases, have been fabricated from the oxidation of n-type zinc nitride films. The zinc nitride thin films were deposited by rf-magnetron sputtering from a zinc nitride target in pure N2 and pure Ar plasma. Films deposited in Ar plasma were conductive (resistivity 4.7×10−2 Ω cm and carrier concentrations around 1020 cm−3) Zn-rich ZnxNy films of low transmittance, whereas ZnxNy films deposited in N2 plasma showed high transmittance (>80%), but five orders of magnitude lower conductivity. Thermal oxidation up to 550 C converted all films into p-type materials, exhibiting high resistivity, 102–103 Ω cm, and carrier concentration around 1013 cm−3. However, upon oxidation, the ZnxNy films did not show the zinc oxide phase, whereas Zn-rich ZnxNy films were converted into films containing ZnO and ZnO2 phases. All films exhibited transmittance >85% with a characteristic excitonic dip in the transmittance curve at 365 nm. Low temperature photoluminescence revealed the existence of exciton emissions at 3.36 and 3.305 eV for the p-type zinc oxide film.  相似文献   

10.
We review the progress in the industrial production of SiC substrates and epitaxial layers for high power semiconductor devices. Optimization of SiC bulk growth by the sublimation method has resulted in the commercial release of 100 mm n-type 4H-SiC wafers and the demonstration of micropipe densities as low as 0.7 cm−2 over a full 100 mm diameter. Modelling results link the formation of basal plane dislocations in SiC crystals to thermoelastic stress during growth. A warm-wall planetary SiC-VPE reactor has been optimized up to a 8×100 mm configuration for the growth of uniform 0.01–80-micron thick, specular, device-quality SiC epitaxial layers with low background doping concentrations of <1×1014 cm−3, and intentional p- and n-type doping from 1×1015 to >1×1019 cm−3. We address the observed degradation of the forward characteristics of bipolar SiC PiN diodes [H. Lendenmann, F. Dahlquist, J.P. Bergmann, H. Bleichner, C. Hallin, Mater. Sci. Forum 389–393 (2002) 1259], and discuss the underlying mechanism due to stacking fault formation in the epitaxial layers. A process for the growth of the epitaxial layers with a basal plane dislocation density <10 cm−2 is demonstrated to eliminate the formation of these stacking faults during device operation [J.J. Sumakeris, M. Das, H.McD. Hobgood, S.G. Müller, M.J. Paisley, S. Ha, M. Skowronski, J.W. Palmour, C.H. Carter Jr., Mater. Sci. Forum 457–460 (2004) 1113].  相似文献   

11.
We report the realization of an AlGaN/GaN HEMT on silicon (001) substrate with noticeably better transport and electrical characteristics than previously reported. The heterostructure has been grown by molecular beam epitaxy. The 2D electron gas formed at the AlGaN/GaN interface exhibits a sheet carrier density of 8×1012 cm−2 and a Hall mobility of 1800 cm2/V s at room temperature. High electron mobility transistors with a gate length of 4 μm have been processed and DC characteristics have been achieved. A maximum drain current of more than 500 mA/mm and a transconductance gm of 120 mS/mm have been obtained. These results are promising and open the way for making efficient AlGaN/GaN HEMT devices on Si(001).  相似文献   

12.
Low-resistivity n-type ZnO thin films were grown by atomic layer deposition (ALD) using diethylzinc (DEZ) and H2O as Zn and O precursors. ZnO thin films were grown on c-plane sapphire (c- Al2O3) substrates at 300 C. For undoped ZnO thin films, it was found that the intensity of ZnO () reflection peak increased and the electron concentration increased from 6.8×1018 to 1.1×1020 cm−3 with the increase of DEZ flow rate, which indicates the increase of O vacancies () and/or Zn interstitials (Zni). Ga-doping was performed under Zn-rich growth conditions using triethylgallium (TEG) as Ga precursor. The resistivity of 8.0×10−4 Ω cm was achieved at the TEG flow rate of 0.24 μmol/min.  相似文献   

13.
Titanium zirconium phosphate and organic polymer hybrid (poly-vinyl alcohol, (3-glycidoxypropyl)-trimethoxysilane and ethylene glycol) based membranes were investigated for their potential application as proton conductors. The hybrid materials were characterized by XRD, FTIR, SEM, TGA and impedance spectroscopy analysis. It was found that embedding of functionalised inorganic particles (TiZrP) into composite polymer matrix allowed for some crystallinity formation, and cross-linking of hydroxyl groups during annealing or reactions within the organic and inorganic phases during synthesis. A complex structure was formed, as many FTIR peaks were masked by more defined peaks assigned to P–O–R bonds. The high concentration of phosphorus in the TiZrP (1:1:9 molar ratio) samples resulted in more hydrophilic particles. This was further reflected in the hybrid membranes as the water losses increased from 13 to 25 wt.% as a function of the TiZrP content changing from 10 to 50 wt.% in the final hybrid membrane, respectively. As a result, proton conductivity increased by two to three orders of magnitude from blank (organic phase only) membranes (2.61 × 10− 5 S cm− 1) to TiZrP hybrid membrane (2.41 × 10− 2 S cm− 1) at 20 °C. Proton conduction changed as a function of temperature and the Ti1Zr1P9 particles content, mainly attributed to the membrane ability to retain water, thus complying with the Grotthus mechanism.  相似文献   

14.
A pyrochlore-related Ce2Zr2O8−x phase has been prepared in a reduction reoxidation process from Ce0.5Zr0.5O2 powders. Ce2Zr2O8−x, based on a cubic symmetry with a=1.053 nm, decomposes in nitrogen at 800 °C, but remains stable up to 900 °C in air. It shows mixed oxygen ionic and electronic conductivity. The bulk conductivity at 700 °C is 4×10−4 S cm−1 in air and 1×10−2 S cm−1 in nitrogen, and the activation energy is 1.27 eV in air. In nitrogen, the Arrhenius law is not obeyed, and a curved plot was obtained from 400 to 700 °C; then, the conductivity decreased rapidly due to the thermal decomposition of Ce2Zr2O8−x.  相似文献   

15.
We fabricated high-quality InAlN/GaN heterostructures by metal–organic vapor phase epitaxy (MOVPE). X-ray diffraction measurements revealed that InAlN/GaN heterostructures grown under optimal conditions have flat surfaces and abrupt heterointerfaces. Electron mobility from 1200 to 2000 cm2/V s was obtained at room temperature. To our knowledge, this mobility is the highest ever reported for InAlN/GaN heterostructures. We also investigated the relationship between the Al composition and sheet electron density (Ns) for the first time. Ns increased from 1.0×1012 to 2.7×1013 cm−2 when the Al composition increased from 0.78 to 0.89.  相似文献   

16.
TheY2Σ+–X2Πinear-infrared electronic transition of CuO was observed at high resolution for the first time. The spectrum was recorded with the Fourier transform spectrometer associated with the McMath–Pierce Solar Telescope at Kitt Peak. The excited CuO molecules were produced in a low pressure copper hollow cathode sputter with a slow flow of oxygen. Constants for theY2Σ+states of CuO are:T0= 7715.47765(54) cm−1,B= 0.4735780(28) cm−1,D= 0.822(12) × 10−6cm−1,H= 0.46(10) × 10−10cm−1, γ = −0.089587(42) cm−1, γD= 0.1272(79) × 10−6cm−1,bF= 0.12347(22) cm−1, andc= 0.0550(74) cm−1. ImprovedX2Πiconstants are also presented.  相似文献   

17.
The electron impact behavior of CO adsorbed on was investigated. The desorption products observed were neutral CO, CO+, and O+. After massive electron impact residual carbon, C/W = 0.15, but not oxygen was also found, suggesting that energetic neutral O, not detected in a mass analyzer must also have been formed. Formation of β-CO, i.e., dissociated CO with C and O on the surface was not seen. The total disappearance cross section varies only slightly with coverage, ranging from 9 × 10 −18 cm2 at low to 5 × 10−18 cm2 at saturation (CO/W = 0.75). The cross section for CO+ formation varies from 4 × 10−22 cm2 at satura to 2 × 10−21 cm2 at low coverage. That for O+ formation is 1.4 × 10−22 cm2 at saturation and 2 × 10−21 cm2 Threshold energies are similar to those found previously [J.C. Lin and R. Gomer, Surf. Sci. 218 (1989) 406] for and CO/Cu1/W(110) which suggests similar mechanisms for product formation, with the exception of β-CO on clean W(110). It is argued that the absence or presence of β-CO in ESD hinges on its formation or absence in thermal desorption, since electron impact is likely to present the surface with vibrationally and rotationally activated CO in all cases; β-CO formation only occurs on surfaces which can dissociate such CO. It was also found that ESD of CO led to a work function increase of the remaining Pd1/W(110) surface of 500 meV, which could be annealed out only at 900 K. This is attributed to surface roughness, caused by recoil momentum of energetic desorbing entities.  相似文献   

18.
The undoped and fluorine doped thin films are synthesized by using cost-effective spray pyrolysis technique. The dependence of optical, structural and electrical properties of SnO2 films, on the concentration of fluorine is reported. Optical absorption, X-ray diffraction, scanning electron microscope (SEM) and Hall effect studies have been performed on SnO2:F (FTO) films coated on glass substrates. The film thickness varies from 800 to 1572 nm. X-ray diffraction pattern reveals the presence of cassiterite structure with (2 0 0) preferential orientation for FTO films. The crystallite size varies from 35 to 66 nm. SEM and AFM study reveals the surface of FTO to be made of nanocrystalline particles. The electrical study reveals that the films are degenerate and exhibit n-type electrical conductivity. The 20 wt% F doped film has a minimum resistivity of 3.8 × 10−4 Ω cm, carrier density of 24.9 × 1020 cm−3 and mobility of 6.59 cm2 V−1 s−1. The sprayed FTO film having minimum resistance of 3.42 Ω/cm2, highest figure of merit of 6.18 × 10−2 Ω−1 at 550 nm and 96% IR reflectivity suggest, these films are useful as conducting layers in electrochromic and photovoltaic devices and also as the passive counter electrode.  相似文献   

19.
Two GaN MOVPE growth methods to reduce the threading dislocation (TD) density have been explored. The combined effects of (1) in situ SiNx masking of the sapphire substrate and (2) starting the epitaxial growth at low V-to-III ratio on the GaN film quality were studied by atomic force microscopy, transmission electron microscopy and high-resolution X-ray diffraction. It was found that the annealing condition of the low-temperature nucleation layer after in situ SiNx masking is critical in order to decrease the density of nucleation sites and hence increase the average grain size to about 5 μm. However, the coalescence of large grains with vertical side facets results in the formation of dense bundles of TDs at the grain boundaries combined with large numbers of basal-plane dislocation loops throughout the film. The formation of these dislocations can be prevented by starting the epilayer growth at low V-to-III ratio, resulting in the formation of grains with inclined side facets. The interaction of the TDs with the inclined side facets causes the dislocations to bend 90 as the grains grow in size and coalesce. GaN films with dislocation densities as low as 1×108 cm−2, giving full-width at half-maximum values of 180 and 220 arcsec for respectively (002) and (302) omega scans, were achieved by the combination of in situ masking and low V–III ratio epilayer growth. Hall carrier mobility values in excess of 900 cm2 V −1 s−1 were deduced for Si-doped layers.  相似文献   

20.
The local structure of Tm3+ ions incorporated into GaN epilayers was studied by means of Extended X-ray Absorption Fine Structure. The samples were doped either in situ during growth by Molecular Beam Epitaxy or by ion implantation of layers grown by Metal Organic Chemical Vapour Deposition. The implantation was done at ion energy of 300 keV and different nominal fluences of 3×1015, 4×1015 cm−2 and 5×1015 cm−2. The concentration of Tm in the samples studied was measured by Wavelength Dispersive X-ray analysis. For the in situ doped sample with concentration of 0.5%, and for all of the implanted samples, Tm was found on the Ga site in GaN. The ion implanted sample and an in situ doped sample with a similar concentration of Tm showed the same local structure, which suggests that the lattice site occupied by Tm does not depend on the doping method. When the average Tm concentration for in situ doped samples is increased to 1.2% and 2.0%, Tm is found to occupy the Ga substitutional site and the presence of a substantial number of Tm ions in the second coordination sphere indicates dopant clustering in the films. The formation of pure TmN clusters was found in an in situ doped sample with a dopant concentration of 3.4%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号