首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two pro-ligands ((R)LH) comprised of an o,p-di-tert-butyl-substituted phenol covalently bonded to a benzimidazole ((Bz)LH) or a 4,5-di-p-methoxyphenyl substituted imidazole ((PhOMe)LH), have been structurally characterised. Each possesses an intramolecular O-H[dot dot dot]N hydrogen bond between the phenolic O-H group and an imidazole nitrogen atom and (1)H NMR studies show that this bond is retained in solution. Each (R)LH undergoes an electrochemically reversible, one-electron, oxidation to form the [(R)LH] (+) radical cation that is considered to be stabilised by an intramolecular O...H-N hydrogen bond. The (R)LH pro-ligands react with M(BF(4))(2).H(2)O (M = Cu or Zn) in the presence of Et(3)N to form the corresponding [M((R)L)(2)] compound. [Cu((Bz)L)(2)] (), [Cu((PhOMe)L)(2)] (), [Zn((Bz)L)(2)] and [Zn((PhOMe)L)(2)] have been isolated and the structures of .4MeCN, .2MeOH, .2MeCN and .2MeCN determined by X-ray crystallography. In each compound the metal possesses an N(2)O(2)-coordination sphere: in .4MeCN and .2MeOH the {CuN(2)O(2)} centre has a distorted square planar geometry; in .2MeCN and .2MeCN the {ZnN(2)O(2)} centre has a distorted tetrahedral geometry. The X-band EPR spectra of both and , in CH(2)Cl(2)-DMF (9 : 1) solution at 77 K, are consistent with the presence of a Cu(ii) complex having the structure identified by X-ray crystallography. Electrochemical studies have shown that each undergo two, one-electron, oxidations; the potentials of these processes and the UV/vis and EPR properties of the products indicate that each oxidation is ligand-based. The first oxidation produces [M(II)((R)L)((R)L )](+), comprising a M(ii) centre bound to a phenoxide ((R)L) and a phenoxyl radical ((R)L ) ligand; these cations have been generated electrochemically and, for R = PhOMe, chemically by oxidation with Ag[BF(4)]. The second oxidation produces [M(II)((R)L )(2)](2+). The information obtained from these investigations shows that a suitable pro-ligand design allows a relatively inert phenoxyl radical to be generated, stabilised by either a hydrogen bond, as in [(R)LH] (+) (R = Bz or PhOMe), or by coordination to a metal, as in [M(II)((R)L)((R)L )](+) (M = Cu or Zn; R = Bz or PhOMe). Coordination to a metal is more effective than hydrogen bonding in stabilising a phenoxyl radical and Cu(ii) is slightly more effective than Zn(II) in this respect.  相似文献   

2.
The synthesis and characterisation of the new N,O-phenol-pyrazole pro-ligand, (pz)LH, comprising a pyrazole covalently linked to an o,p-di-tert-butyl-substituted phenol, are herein reported. In CH(2)Cl(2) at room temperature, the cyclic voltammogram (CV) of (pz)LH exhibits a quasi-reversible one-electron oxidation process (at E(1/2) = 0.66 V vs. Fc(+)/Fc) attributed to the formation of the phenoxyl radical cation [(pz)LH]˙(+). (pz)LH reacts with M(II)(BF(4))(2) (M = Cu, Co) in a 2:1 ratio to afford the bis-Cu(pz)L(2) (1) and tris-Co(pz)L(3) (2) complexes respectively. The X-ray structure of 1 reveals a Cu(II) ion in a square-planar trans-Cu(II)-N(2)O(2) coordination environment whereas that of 2 consists of a Co(III) ion with an octahedral mer-N(3)O(3) coordination sphere; formed by the chelation of two (in 1) or three (in 2) N,O-bidentate phenolate ligands respectively. Both structures are preserved in CH(2)Cl(2) solution, as revealed by their NMR (for 2) and EPR (for 1) data. The CVs of 1 and 2 consist of two (at E(1/2): 0.43 and 0.58 V vs. Fc(+)/Fc) and three (E(1/2) = 0.12, 0.54 and 0.89 V vs. Fc(+)/Fc) reversible one-electron oxidation processes, respectively. The one-electron electrochemical oxidation of 1 and 2 produces the oxidised species, 1(+) and 2(+), which are stable for several hours at room temperature under inert atmosphere in CH(2)Cl(2). The UV/vis and EPR data obtained for 1(+) and 2(+) are unambiguously consistent with the latter being formulated as Cu(II)- and Co(III)-phenoxyl radical complexes, as [Cu(II)((pz)L˙)((pz)L)](+) and [Co(III)((pz)L˙)((pz)L)(2)](+) respectively.  相似文献   

3.
The synthesis of a (carboxyamido)pyridinepyrazolate (H(5)bppap) dinucleating ligand is described. Bimetallic iron and cobalt complexes of H(5)bppap ([M(II)(2)H(2)bppap](+)) showed structural differences in both their primary and secondary coordination spheres. The binding of small molecules into the preorganized ligand cavity is verified by the hydration of [Fe(II)(2)H(2)bppap](+) and [Co(II)(2)H(2)bppap](+), leading to the formation of complexes [{Co(II)(OH)}Co(II)H(3)bppap](+) and [{Fe(II)(OH)}Fe(II)H(3)bppap](+), in which one of the metal centers has a terminal hydroxo ligand.  相似文献   

4.
Two series of square planar, diamagnetic, neutral complexes of nickel(II), palladium(II), and platinum(II) containing two N,N-coordinated o-diiminobenzosemiquinonate(1-) pi radical ligands have been synthesized and characterized by UV-vis and (1)H NMR spectroscopy: [M(II)((2)L(ISQ))(2)], M = Ni (1), Pd (2), Pt (3), and [M(II)((3)L(ISQ))(2)] M = Ni (4), Pd (5), Pt (6). H(2)[(2)L(PDI)] represents 3,5-di-tert-butyl-o-phenylenediamine and H(2)[(3)L(PDI)] is N-phenyl-o-phenylenediamine; (L(ISQ))(1-) is the o-diiminobenzosemiquinonate pi radical anion, and (L(IBQ))(0) is the o-diiminobenzoquinone form of these ligands. The structures of complexes 1, 4, 5, and 6 have been (re)determined by X-ray crystallography at 100 K. Cyclic voltammetry established that the complete electron-transfer series consisting of a dianion, monoanion, neutral complex, a mono- and a dication exists: [M(L)(2)](z)z = -2, -1, 0, 1+, 2+. Each species has been electrochemically generated in solution and their X-band EPR and UV-vis spectra have been recorded. The oxidations and reductions are invariably ligand centered. Two o-diiminobenzoquinones(0) and two fully reduced o-diiminocatecholate(2-) ligands are present in the dication and dianion, respectively, whereas the monocations and monoanions are delocalized mixed valent class III species [M(II)(L(ISQ))(L(IBQ))](+) and [M(II)(L(ISQ))(L(PDI))](-), respectively. One-electron oxidations of 1 and trans-6 yield the diamagnetic dications [cis-[Ni(II)((2)L(ISQ))((2)L(IBQ))](2)]Cl(2) (7) and [trans-[Pt(II)((3)L(ISQ))((3)L(IBQ))](2)](CF(3)SO(3))(2) (8), respectively, which have been characterized by X-ray crystallography; both complexes possess a weak M.M bond and the ligands adopt an eclipsed configuration due to weak bonding interactions via pi stacking.  相似文献   

5.
The reaction of the ligand 2-(2-trifluoromethyl)anilino-4,6-di-tert-butylphenol, H(2)((1)L(IP)), and PdCl(2) (2:1) in the presence of air and excess NEt(3) in CH(2)Cl(2) produced blue-green crystals of diamagnetic [Pd(II)((1)L(ISQ))(2)] (1), where ((1)L(ISQ))(*)(-) represents the o-iminobenzosemiquinonate(1-) pi radical anion of the aromatic ((1)L(IP))(2-) dianion. The diamagnetic complex 1 was chemically oxidized with 1 equiv of Ag(BF(4)), affording red-brown crystals of paramagnetic (S = (1)/(2)) [Pd(II)((1)L(ISQ))((1)L(IBQ))](BF(4)) (2), and one-electron reduction with cobaltocene yielded paramagnetic (S = (1)/(2)) green crystals of [Cp(2)Co][Pd(II)((1)L(ISQ))((1)L(IP))] (3); ((1)L(IBQ))(0) represents the neutral, diamagnetic quinone form. Complex 1 was oxidized with 2 equiv of [NO]BF(4), affording green crystals of diamagnetic [Pd(II)((1)L(IBQ))(2)](3)(BF(4))(4){(BF(4))(2)H}(2).4CH(2)Cl(2) (5). Oxidation of [Ni(II)((1)L(ISQ))(2)] (S = 0) in CH(2)Cl(2) solution with 2 equiv of Ag(ClO(4)) generated crystals of [Ni(II)((1)L(IBQ))(2)(ClO(4))(2)].2CH(2)Cl(2) (6) with an S = 1 ground state. Complexes 1-5 constitute a five-membered complete electron-transfer series, [Pd((1)L)(2)](n) (n = 2-, 1-, 0, 1+, 2+), where only species 4, namely, diamagnetic [Pd(II)((1)L(IP))(2)](2-), has not been isolated; they are interrelated by four reversible one-electron-transfer waves in the cyclic voltammogram. Complexes 1, 2, 3, 5, and 6 have been characterized by X-ray crystallography at 100 K, which establishes that the redox processes are ligand centered. Species 2 and 3 exhibit ligand mixed valency: [Pd(II)((1)L(ISQ))((1)L(IBQ))](+) has localized ((1)L(IBQ))(0) and ((1)L(ISQ))(*)(-) ligands in the solid state, whereas in [Pd(II)((1)L(ISQ))((1)L(IP))](-) the excess electron is delocalized over both ligands in the solid-state structure of 3. Electronic and electron spin resonance spectra are reported, and the electronic structures of all members of this electron-transfer series are established.  相似文献   

6.
7.
Treatment of a thiolato-bridged Ru(II)Ag(I)Ru(II) trinuclear complex, [Ag{Ru(aet)(bpy)(2)}(2)](3+) (aet = 2-aminoethanthiolate; bpy = 2,2'-bipyridine), with NaI in aqueous ethanol under an aerobic condition afforded a mononuclear ruthenium(II) complex having an S-bonded sulfinato group, [1](+) ([Ru(aesi-N, S)(bpy)(2)](+) (aesi = 2-aminoethanesulfinate)). Similar treatment of optically active isomers of an analogous Ru(II)Ag(I)Ru(II) trinuclear complex, Δ(D)Δ(D)- and Λ(D)Λ(D)-[Ag{Ru(d-Hpen-O,S)(bpy)(2)}(2)](3+) (d-pen = d-penicillaminate), with NaI also produced mononuclear ruthenium(II) isomers with an S-bonded sulfinato group, Δ(D)- and Λ(D)-[2](+) ([Ru(d-Hpsi-O,S)(bpy)(2)](+) (d-psi = d-penicillaminesulfinate)), respectively, retaining the bidentate-O,S coordination mode of a d-Hpen ligand and the absolute configuration (Δ or Λ) about a Ru(II) center. On refluxing in water, the Δ(D) isomer of [2](+) underwent a linkage isomerization to form Δ(D)-[3] (+) ([Ru(d-Hpsi-N,S)(bpy)(2)](+)), in which a d-Hpsi ligand coordinates to a Ru(II) center in a bidentate-N,S mode. Complexes [1](+), Δ(D)- and Λ(D)-[2](+), and Δ(D)-[3](+) were fully characterized by electronic absorption, CD, NMR, and IR spectroscopies, together with single-crystal X-ray crystallography. The electrochemical properties of these complexes, which are highly dependent on the coordination mode of sulfinate ligands, are also described.  相似文献   

8.
Template condensation of 3,5-di-tert-butyl-2-hydroxybenzaldehyde S-methylisothiosemicarbazone with pentane-2,4-dione and triethyl orthoformate at elevated temperatures resulted in metal complexes of the type M(II)L, where M = Ni and Cu and H(2)L = a novel tetradentate ligand. These complexes are relevant to the active site of the copper enzymes galactose oxidase and glyoxal oxidase. Demetalation of Ni(II)L with gaseous hydrogen chloride in chloroform afforded the metal-free ligand H(2)L. Then by the reaction of H(2)L with Zn(CH(3)COO)(2)·2H(2)O in a 1:1 molar ratio in 1:2 chloroform/methanol, the complex Zn(II)L(CH(3)OH) was prepared. The three metal complexes and the prepared ligand were characterized by spectroscopic methods (IR, UV-vis, and NMR spectroscopy), X-ray crystallography, and DFT calculations. Electrochemically generated one-electron oxidized metal complexes [NiL](+), [CuL](+), and [ZnL(CH(3)OH)](+) and the metal-free ligand cation radical [H(2)L](+?) were studied by EPR/UV-vis-NIR and DFT calculations. These studies demonstrated the interaction between the metal ion and the phenoxyl radical.  相似文献   

9.
A series of homoleptic complexes with non-innocent ligands derived from N,N'-bis(pentafluorophenyl)-o-phenylenediamine (H(2)(F)pda) are reported. [Ni(II)((F)sbqdi)(2)] (1), [Pd(II)((F)sbqdi)(2)] (2), [Co(II)((F)sbqdi)(2)] (3), and [Cu(II)((F)sbqdi)(2)] (4) were synthesized, where ((F)sbqdi)(1-) represents a radical anion formed by one-electron oxidation of the doubly deprotonated H2(F)pda. The oxidation states of ligands and metals in complexes 1-4 were assigned by single crystal X-ray crystallography performed at low temperatures. Complex 4 is the first Cu(II) complex where both o-phenylenediamine derived ligands are monoanionic radicals. The bulky N-C6F5 substituents force the complexes 1, 3, and 4 to adopt a twisted geometry (intermediate between square-planar and tetrahedral). The electronic structures of the neutral compounds 1-4 and of some of their cationic and/or anionic neighboring redox states were probed using EPR and UV-VIS-NIR spectroelectrochemistry. The twisted geometry of the complexes results in considerable changes in their electronic structures compared to the well known square-planar complexes while the strongly electron withdrawing N-C6F5 groups have a great influence on redox properties.  相似文献   

10.
Chiral recognition of racemic bicyclo[3.3.0] octane-2,6-diol(B) was achieved in the gas phase using s-Naproxen(A) as reference, using the kinetics of competitive unimolecule dissociation of tetrameric zinc(II)-bound complexes by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometer(ESI-FTMS). As undergoing a mild competitive collision-induced dissociation(CID) experiment with a constant pressure argon gas introduced by leak valve, the tetrameric cluster ion [A(2)B(2)Z(n)(II)-H](+) forms only two trimeric ions and R(chiral) is subsequently obtained in the kinetic method. Further studies obtained the difference of Gibbs free energy of [ABZ(n)(II)-H](+)(Delta Delta G(ABZn(II)-H](+))) by dissociating [A(2)BZ(n)(II)-H](+), resulting two fragment ions [ABZ(n)(II)-H](+) and [A(2)Z(n)(II)-H](+), which can be established to a linear relationship between Delta Delta G([ABZn(II)-H](+)) and R(chiral)' basing on the kinetic method. The value of R(chiral)' suggested that Delta Delta G([ABZn(II)-H](+)) could be regarded as zero. Meanwhile, dissociation of [AB(2)Z(n)(II)-H](+) generated only one daughter ion [ABZ(n)(II)-H](+) in a stable pressure. Thus, a linear relationship was established between the difference of Gibbs free energy of [AB(2)Z(n)(II)-H](+)(Delta Delta G([AB(2)Zn(II)-H](+))) and R(chiral)" if the Delta Delta G([ABZn(II)-H](+)) can be negligible. Because there is also a linear relationship of R(chiral) in the tetrameric ion [A(2)B(2)Z(n)(II)-H](+) and the Gibbs energy difference of trimeric cluster ion [A(2)BZ(n)(+)(II)-H](Delta Delta G([A(2)BZn(II)-H](+))) plus that of [AB(2)Z(n)(II)-H](+), Delta Delta G([A(2)BZ(n)(II)-H]+]) is easy to be calculated in the dissociation process of tetrameric ion. Stable of R(chiral), R(chiral)' and R(chiral)" under different pressures show T(eff) does not affect the chiral recognition of cluster ions in the condition selected. If an only-one-daughter-ion fragment process of [A(2)BZ(n)(II)-H](+) was existed, R(chiral)' relating to this dissociation would be calculated just like R(chiral)" of [AB(2)Z(n)(II)-H](+) does. Conclusion was obtained that [A(2)BZ(n)(II)-H](+) makes more contribution to chiral recognition of tetrameric ion measured by kinetic method than [AB(2)Z(n)(II)-H](+) does as R(chiral)' and R(chiral)" were applied as index to evaluate the Gibbs free energy difference of these two trimeric cluster ions. Further discussion shows that steric interactions and pi-pi stacking interactions are the major factors responsible for the observed efficient chiral recognition in this system.  相似文献   

11.
From the reaction of Ni(COD)(2) (COD = cyclooctadiene) in dry diethylether with 2 equiv of 2-phenyl-1,4-bis(isopropyl)-1,4-diazabutadiene (L(Ox))(0) under an Ar atmosphere, dark red, diamagnetic microcrystals of [Ni(II)(L*)(2)] (1) were obtained where (L*)(1-) represents the pi radical anion of neutral (L(Ox))(0) and (L(Red))(2-) is the closed shell, doubly reduced form of (L(Ox))(0). Oxidation of 1 with 1 equiv of ferrocenium hexafluorophosphate in CH(2)Cl(2) yields a paramagnetic (S = 1/2), dark violet precipitate of [Ni(I)(L(Ox))(2)](PF(6)) (2) which represents an oxidatively induced reduction of the central nickel ion. From the same reaction but with 2 equiv of [Fc](PF(6)) in CH(2)Cl(2), light green crystals of [Ni(II)(L(Ox))(2)(FPF(5))](PF(6)) (3) (S = 1) were obtained. If the same reaction was carried out in tetrahydrofuran, crystals of [Ni(II)(L(Ox))(2)(THF)(FPF(5))](PF(6)) x THF (4) (S = 1) were obtained. Compounds 1, 2, 3, and 4 were structurally characterized by X-ray crystallography: 1 and 2 contain a tetrahedral neutral complex and a tetrahedral monocation, respectively, whereas 3 contains the five-coordinate cation [Ni(II)(L(Ox))(2)(FPF(5))](+) with a weakly coordinated PF(6)(-) anion and in 4 the six-coordinate monocation [Ni(II)(L(Ox))(2)(THF)(FPF(5))](+) is present. The electro- and magnetochemistry of 1-4 has been investigated by cyclic voltammetry and SQUID measurements. UV-vis and EPR spectroscopic data for all compounds are reported. The experimental results have been confirmed by broken symmetry DFT calculations of [Ni(II)(L*)(2)](0), [Ni(I)(L(Ox))(2)](+), and [Ni(II)(L(Ox))(2)](2+) in comparison with calculations of the corresponding Zn complexes: [Zn(II)((t)L(Ox))(2)](2+), [Zn(II)((t)L(Ox))((t)L*)](+), [Zn(II)((t)L*)(2)](0), and [Zn(II)((t)L*)((t)L(Red))](-) where ((t)L(Ox))(0) represents the neutral ligand 1,4-di-tert-butyl-1,4-diaza-1,3-butadiene and ((t)L*)(1-) and ((t)L(Red))(2-) are the corresponding one- and two-electron reduced forms. It is clearly established that the electronic structures of both paramagnetic monocations [Ni(I)(L(Ox))(2)](+) (S = 1/2) and [Zn(II)((t)L(Ox))((t)(L*)](+) (S = 1/2) are different.  相似文献   

12.
Co(III) complexes of N(3)O-donor tripodal ligands, 2,4-di(tert-butyl)-6-{[bis(2-pyridyl)methyl]aminomethyl}phenolate (tbuL), 2,4-di(tert-butyl)-6-{[bis(6-methyl-2-pyridyl)methyl]aminomethyl}phenolate (tbuL(Mepy)(2)), were prepared, and precursor Co(II) complexes, [Co(tbuL)Cl] (1) and [Co(tbuL(Mepy)(2))Cl] (2), and ternary Co(III) complexes, [Co(tbuL)(acac)]ClO(4) (3), [Co(tbuL)(tbu-cat)] (4), and [Co(tbuL(Mepy)(2))(tbu-SQ)]ClO(4) (5), where acac, tbu-cat, and tbu-SQ refer to pentane-2,4-dionate, 3,5-di(tert-butyl)catecholate, and 3,5-di(tert-butyl)semiquinonate, respectively, were structurally characterized by the X-ray diffraction method. Complexes 3 and 5 have a mononuclear structure with a fac-N(3)O(3) donor set, while 4 has a mer-N(3)O(3) structure. The cyclic voltammogram (CV) of complex 3 exhibited one reversible redox wave centered at 0.93 V (vs Ag/AgCl) in CH(3)CN. Complex 5 was converted to a phenoxyl radical species upon oxidation with Ce(IV), showing a characteristic pi-pi* transition band at 412 nm. The ESR spectrum at low temperature and the resonance Raman spectrum of 3 established that the radical species has a Co(III)-phenoxyl radical bond. On the other hand, the CVs showed two oxidation processes at E(1/2) = 0.01 and E(pa) = 0.92 V for 4 and E(1/2a) = 0.05 and E(1/2b) = 0.69 V for 5. The rest potential of 4 (-0.11 V) was lower than the E(1/2) value, whereas that of 5 (0.18 V) was higher, indicating that the first redox wave of 4 and 5 is assigned to the tbu-cat and the tbu-SQ redox process, respectively. One-electron oxidized 4 showed absorption, resonance Raman, and ESR spectra which are similar to those of 5, suggesting formation of a stable Co(III)-semiquinonate species, which has the same oxidation level of 5. The resonance Raman spectrum of two-electron oxidized 4 showed the nu(8a) bands of the semiquinonate and phenoxyl radical, which were absent in the spectrum of one-electron oxidized 5. Since both oxidized species were ESR inactive at 5 K, the former was concluded to be a biradical species containing semiquinonate and phenoxyl radicals coupled antiferromagnetically and the latter to a species with a coordinated quinone.  相似文献   

13.
Dong Q  Rose MJ  Wong WY  Gray HB 《Inorganic chemistry》2011,50(20):10213-10224
Here we report the syntheses and crystal structures of a series of cobalt(II) and nickel(II) complexes derived from (R)NP2 ligands (where R = OMe(Bz), H(Bz), Br(Bz), Ph) bearing ethylene linkers between a single N and two P donors. The Co(II) complexes generally adopt a tetrahedral configuration of general formula [(NP2)Co(I)(2)], wherein the two phosphorus donors are bound to the metal center but the central N-donor remains unbound. We have found one case of structural isomerism within a single crystal structure. The Co(II) complex derived from (Bz)NP2 displays dual coordination modes: one in the tetrahedral complex [((Bz)NP2)Co(I)(2)]; and the other in a square pyramidal variant, [((Bz)NP2)Co(I)(2)]. In contrast, the Ni(II) complexes adopt a square planar geometry in which the P(Et)N(Et)P donors in the ligand backbone are coordinated to the metal center, resulting in cationic species of formula [((R)NP2)Ni(I)](+) with iodide as counterion. All Ni(II) complexes exhibit sharp (1)H and (31)P spectra in the diamagnetic region. The Co(II) complexes are high-spin (S = 3/2) in the solid state as determined by SQUID measurements from 4 to 300 K. Solution electron paramagnetic resonance (EPR) experiments reveal a high-spin/low-spin Co(II) equilibrium that is dependent on solvent and ligand substituent.  相似文献   

14.
The bidentate ligands N-phenyl-o-phenylenediamine, H(2)((2)L(N)IP), or its analogue 2-(2-trifluoromethyl)anilino-4,6-di-tert-butylphenol, ((4)L(N)IP), react with [Co(II)(CH(3)CO(2))(2)]4H(2)O and triethylamine in acetonitrile in the presence of air yielding the square-planar, four-coordinate species [Co((2)L(N))(2)] (1) and [Co((4)L(O))(2)] (4) with an S=1/2 ground state. The corresponding nickel complexes [Ni((4)L(O))(2)] (8) and its cobaltocene reduced form [Co(III)(Cp)(2)][Ni((4)L(O))(2)] (9) have also been synthesized. The five-coordinate species [Co((2)L(N))(2)(tBu-py)] (2) (S=1/2) and its one-electron oxidized forms [Co((2)L(N))(2)(tBu-py)](O(2)CCH(3)) (2 a) or [Co((2)L(N))(2)I] (3) with diamagnetic ground states (S=0) have been prepared, as has the species [Co((4)L(O))(2)(CH(2)CN)] (7). The one-electron reduced form of 4, namely [Co(Cp)(2)][Co((4)L(O))(2)] (5) has been generated through the reduction of 4 with [Co(Cp)(2)]. Complexes 1, 2, 2 a, 3, 4, 5, 7, 8, and 9 have been characterized by X-ray crystallography (100 K). The ligands are non-innocent and may exist as catecholate-like dianions ((2)L(N)IP)(2-), ((4)L(N)IP)(2-) or pi-radical semiquinonate monoanions ((2)L(N)ISQ)(*) (-), ((4)L(N)ISQ)(*) (-) or as neutral benzoquinones ((2) L(N)IBQ)(0), ((4) L(N)IBQ)(0); the spectroscopic oxidation states of the central metal ions vary accordingly. Electronic absorption, magnetic circular dichroism, and EPR spectroscopy, as well as variable temperature magnetic susceptibility measurements have been used to experimentally determine the electronic structures of these complexes. Density functional theoretical (DFT) and correlated ab initio calculation have been performed on the neutral and monoanionic species [Co((1)L(N))(2)](0,-) in order to understand the structural and spectroscopic properties of complexes. It is shown that the corresponding nickel complexes 8 and 9 contain a low-spin nickel(II) ion regardless of the oxidation level of the ligand, whereas for the corresponding cobalt complexes the situation is more complicated. Spectroscopic oxidation states describing a d(6) (Co(III)) or d(7) (Co(II)) electron configuration cannot be unambiguously assigned.  相似文献   

15.
Reaction of [Ru(acac)(2)(CH(3)CN)(2)] with 3,6-bis(3,5-dimethylpyrazol-1-yl)-1,4-dihydro-1,2,4,5-tetrazine (H(2)L) results in formation of an unexpected dinuclear complex [(acac)(2)Ru(III)(L(1))Ru(III)(acac)(2)] (1) in which the bridging ligand [L(1)](2)(-) contains an (-)HN[bond]C[double bond]N[bond]N[double bond]C[bond]NH(-) unit arising from two-electron reduction of the 1,4-dihydro-1,2,4,5-tetrazine component of H(2)L. The crystal structure of complex 1 confirms the oxidation assignment of the metal ions as Ru(III) and clearly shows the consequent arrangement of double and single bonds in the bridging ligand, which acts as a bis-bidentate chelate having two pyrazolyl/amido chelating sites. Cyclic voltammetry of the complex shows the presence of four reversible one-electron redox couples, assigned as two Ru(III)/Ru(IV) couples (oxidations with respect to the starting material) and two Ru(II)/Ru(III) couples (reductions with respect to the starting material). The separation between the two Ru(III)/Ru(IV) couples (Delta E(1/2) = 700 mV) is much larger than that between the two Ru(II)/Ru(III) couples (Delta E(1/2) = 350 mV) across the same bridging pathway, because of the better ability of the dianionic bridging ligand to delocalize an added hole (in the oxidized mixed-valence state) than an added electron (in the reduced mixed-valence state), implying some ligand-centered character for the oxidations. UV-vis-NIR spectroelectrochemical measurements were performed in all five oxidation states; the Ru(II)-Ru(III) mixed-valence state of [1](-) has a strong IVCT transition at 2360 nm whose parameters give an electronic coupling constant of V(ab) approximately 1100 cm(-1), characteristic of a strongly interacting but localized (class II) mixed-valence state. In the Ru(III)-Ru(IV) mixed-valence state [1](+), no low-energy IVCT could be detected despite the strong electronic interaction, possibly because it is in the visible region and obscured by LMCT bands.  相似文献   

16.
The coordination chemistry of the N-substituted arylamido ligands [N(R)(C6H3R'2-2,6)] [R = SiMe3, R' = Me (L1); R = CH2But, R' = Pri (L2)] toward FeII and CoII ions was studied. The monoamido complexes [M(L1)(Cl)(tmeda)] [M = Fe (1), Co (2)] react readily with MeLi, affording the mononuclear, paramagnetic iron(II) and cobalt(II) methyl-arylamido complexes [M(L1)(Me)(tmeda)] [M = Fe (3), Co (4)]. Treatment of 2:1 [Li(L2)(THF)2]/FeCl2 affords the unusual two-coordinate iron(II) bis(arylamide) [Fe(L2)2] (5).  相似文献   

17.
Three hexadentate, asymmetric pendent arm macrocycles containing a 1,4,7-triazacyclononane-1,4-diacetate backbone and a third, N-bound phenolate or thiophenolate arm have been synthesized. In [L(1)](3)(-) the third arm is 3,5-di-tert-butyl-2-hydroxybenzyl, in [L(2)](3)(-) it is 2-mercaptobenzyl, and in [L(3)](3)(-) it is 3,5-di-tert-butyl-2-mercaptobenzyl. With trivalent metal ions these ligands form very stable neutral mononuclear complexes [M(III)L(1)] (M = Ga, Fe, Co), [M(III)L(2)] (M = Ga, Fe, Co), and [M(III)L(3)] (M = Ga, Co) where the gallium and cobalt complexes possess an S = 0 and the iron complexes an S = (5)/(2) ground state. Complexes [CoL(1)].CH(3)OH.1.5H(2)O, [CoL(3)].1.17H(2)O, [FeL(1)].H(2)O, and [FeL(2)] have been characterized by X-ray crystallography. Cyclic voltammetry shows that all three [M(III)L(1)] complexes undergo a reversible, ligand-based, one-electron oxidation generating the monocations [M(III)L(1)(*)](+) which contain a coordinated phenoxyl radical as was unambiguously established by their electronic absorption, EPR, and M?ssbauer spectra. In contrast, [M(III)L(2)] complexes in CH(3)CN solution undergo an irreversible one-electron oxidation where the putative thiyl radical monocationic intermediates dimerize with S-S bond formation yielding dinuclear disulfide species [M(III)L(2)-L(2)M(III)](2+). [GaL(3)] behaves similarly despite the steric bulk of two tertiary butyl groups at the 3,5-positions of the thiophenolate, but [Co(III)L(3)] in CH(2)Cl(2) at -20 to -61 degrees C displays a reversible one-electron oxidation yielding a relatively stable monocation [Co(III)L(3)(*)](+). Its electronic spectrum displays intense transitions in the visible at 509 nm (epsilon = 2.6 x 10(3) M(-)(1) cm(-)(1)) and 670sh, 784 (1.03 x 10(3)) typical of a phenylthiyl radical. The EPR spectrum of this species at 90 K proves the thiyl radical to be coordinated to a diamagnetic cobalt(III) ion (g(iso) = 2.0226; A(iso)((59)Co) = 10.7 G).  相似文献   

18.
The paramagnetic aryl-alkynyl complexes [Mo(C≡CAr)(dppe)(η-C(7)H(7))](+) (dppe = Ph(2)PCH(2)CH(2)PPh(2); Ar = C(6)H(5), [1](+); C(6)D(5), [2](+); C(6)H(4)-4-F, [3](+); C(6)H(4)-4-Me, [5](+)) and [Mo(C≡CBu(t))(dppe)(η-C(7)H(7))](+) [4](+), have been investigated in a combined EPR and ENDOR study. Direct experimental evidence for the delocalisation of unpaired spin density over the framework of an aryl-alkynyl ligand has been obtained. The X-band solution EPR spectrum of the 4-fluoro derivative, [3](+), exhibits resolved hyperfine coupling to the remote para position of the aryl group [a(iso)((19)F) = 4.5 MHz, (1.6 G)] in addition to couplings attributable to (95/97)Mo, (31)P and (1)H of the C(7)H(7) ring. A full analysis of the (1)H ENDOR spectra is restricted by the low g anisotropy of the system which prevents the use of orientation selection. However, inter-comparison of the (1)H cw-ENDOR frozen solution spectra of [1](+), [2](+), [4](+) and [5](+), combined with spectral simulation informed by calculated values derived from DFT investigations, has facilitated estimation of the experimental a(iso)((1)H) hyperfine couplings of [1](+) including the ortho, ±3.7 MHz (±1.3 G) and para, ±3.9 MHz (±1.4 G) positions of the C(6)H(5) substituent of the aryl-alkynyl ligand.  相似文献   

19.
The synthesis and characterization of the bis(bidentate) Schiff-base ligand [(R)-2] formed by the condensation reaction of (R)-1,1'-binaphthyl-2,2'-diamine [(R)-BINAM] with pyridine-2-carboxaldehyde is presented. The coordination chemistry of (R)-2 with Ni(ClO(4))(2).6H(2)O, Co(ClO(4))(2).6H(2)O, CuCl(2), and CuSO(4) has been investigated. Reaction of (R)-2 with the first two metal salts leads to complexes of the type [M((R)-4)(2)](ClO(4))(2) (M = Ni(II), Co(II)), where (R)-4 is a tridentate ligand resulting from the hydrolytic cleavage of one of the pyridyl groups from (R)-2. Both complexes were characterized by X-ray crystallography, which showed that the Lambda absolute configuration of the metal center is favored in both cases. (1)H NMR spectroscopy suggests that the high diastereoselectivity of Lambda-[Co((R)-4)(2)](ClO(4))(2) is maintained in solution. The reaction of (R)-2 with CuCl(2) leads to the dinuclear complex [Cu(2)((R)-2)Cl(4)], which has a [Cu(2)(mu(2)-Cl(2))] core. The reaction of CuSO(4) with (R)-2 gives a dimeric complex, [Cu((R)-4)SO(4)](2), which features a [Cu(2)(mu(2)-(SO(4))(2))] core. This complex can be prepared directly by the reaction of (R)-BINAM with pyridine-2-carboxaldehyde and CuSO(4). The use of rac-BINAM in this synthetic procedure leads to the heterochiral dimer [Cu(2)((R)-4)((S)-4)(SO(4))(2)]; that is, the ligands undergo a self-sorting (self/nonself discrimination) process based on chirality. The reaction of rac-BINAM, pyridine-2-carboxaldehyde, and Co(ClO(4))(2).6H(2)O proceeds via a homochiral self-sorting pathway to produce a racemic mixture of [Co((R)-4)(2)](2+) and [Co((S)-4)(2)](2+). The variable-temperature magnetic susceptibilities of the bimetallic complexes [Cu(2)((R)-2)Cl(4)], [Cu((R)-4)(mu(2)-SO(4))](2), and [Cu(2)((R)-4)((S)-4)(mu(2)-SO(4))(2)] all show weak antiferromagnetic coupling with J = -1.0, -0.40, and -0.67 cm(-)(1), respectively.  相似文献   

20.
Hexakis(2-pyridyloxy)cyclotriphosphazene (L) is an efficient multisite coordination ligand which binds with transition metal ions to produce dinuclear (homo- and heterometallic) complexes [L(CuCl)(CoCl3)], [L(CuCl)(ZnCl3)], [L(CoCl)(ZnCl3)], and [L(ZnCl2)2]. In these dinuclear derivatives the cyclophosphazene ligand utilizes from five to six nitrogen coordination sites out of the maximum of nine available sites. Further, the spacer oxygen that separates the pyridyl moiety from the cyclophosphazene ring ensures minimum steric strain to the cyclophosphazene ring upon coordination. This is reflected in the near planarity of the cyclophosphazene ring in all the dinuclear derivatives. In the dinuclear heterobimetallic derivatives one of the metal ions [Cu(II) or Co(II)] is hexacoordinate and is bound by the cyclophosphazene in a eta5-gem-N5 mode. The other metal ion in these heterobimetallic derivatives [Co(II) or Zn(II)] is tetracoordinate and is bound in an eta(1)-N(1) fashion. In the homobimetallic derivative, [L(ZnCl2)2], one of the zinc ions is five-coordinate (eta3-nongem-N3), while the other zinc ion is tetracoordinate(eta2-gem-N2). The reaction of L with CuCl2 followed by Co(NO3)2.6H2O yields a trinuclear heterobimetallic complex [{(L'CuCl)2Co(NO3)}Cl] [L' = N3P3(OC5H4N)5(O)]. In the formation of this compound an unusual P-O bond cleavage involving one of the phosphorus-pyridyloxy bonds is observed. The molecular structure of [{(L'CuCl)2Co(NO3)}Cl] [L' = N3P3(OC5H4N)5(O)] reveals that each of the two the P-O-cleaved L' ligands is involved in binding to Cu(II) to generate the motif L'CuCl. Two such units are bridged by a Co(II) ion. The coordination environment around the bridging Co(II) ion contains four oxygen (two P-O units, one chelating nitrate) and two nitrogen atoms (pyridyloxy nitrogens).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号