首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Gravitational field-flow fractionation (GFFF) is the simplest and cheapest of field-flow fractionation (FFF) techniques, although it is still at an early development stage. The application of GFFF to the determination of particle size distribution (PSD) of silica particles used as chromatographic supports is described. The accuracy of the method is evaluated by comparing PSDs obtained by GFFF with those obtained by laser diffraction, a non-separative technique widely applied to particle characterization. It is ultimately demonstrated that a low-cost GFFF channel can simply replace the column of a standard HPLC system, allowing laboratories that are not specialized in size analysis to perform accurate PSD studies with standard HPLC expertise.  相似文献   

2.
Ordered mesoporous silicas such as micelle-templated silicas (MTS) feature unique textural properties in addition to their high surface area (approximately 1000 m2/g): narrow mesopore size distributions and controlled pore connectivity. These characteristics are highly relevant to chromatographic applications for resistance to mass transfer, which has never been studied in chromatography because of the absence of model materials such as MTS. Their synthesis is based on unique self-assembly processes between surfactants and silica. In order to take advantage of the perfectly adjustable texture of MTS in chromatographic applications, their particle morphology has to be tailored at the micrometer scale. We developed a synthesis strategy to control the particle morphology of MTS using the concept of pseudomorphic transformation. Pseudomorphism was recognized in the mineral world to gain a mineral that presents a morphology not related to its crystallographic symmetry group. Pseudomorphic transformations have been applied to amorphous spherical silica particles usually used in chromatography as stationary phases to produce MTS with the same morphology, using alkaline solution to dissolve progressively and locally silica and reprecipitate it around surfactant micelles into ordered MTS structures. Spherical beads of MTS with hexagonal and cubic symmetries have been synthesized and successfully used in HPLC in fast separation processes. MTS with a highly connected structure (cubic symmetry), uniform pores with a diameter larger than 6 nm in the form of particles of 5 microm could compete with monolithic silica columns. Monolithic columns are receiving strong interest and represent a milestone in the area of fast separation. Their synthesis is a sol-gel process based on phase separation between silica and water, which is assisted by the presence of polymers. The control of the synthesis of monolithic silica has been systematically explored. Because of unresolved yet cladding problems to evaluate the resulting macromonoliths in HPLC, micromonoliths were synthesized into fused-silica capillaries and evaluated by nano-LC and CEC. Only CEC allows to gain high column efficiencies in fast separation processes. Capillary silica monolithic columns represent attractive alternatives for miniaturization processes (lab-on-a chip) using CEC.  相似文献   

3.
Mesoporous silica spheres from colloids   总被引:1,自引:0,他引:1  
A novel method has been developed to synthesize mesoporous silica spheres using commercial silica colloids (SNOWTEX) as precursors and electrolytes (ammonium nitrate and sodium chloride) as destabilizers. Crosslinked polyacrylamide hydrogel was used as a temporary barrier to obtain dispersible spherical mesoporous silica particles. The influences of synthesis conditions including solution composition and calcination temperature on the formation of the mesoporous silica particles were systematically investigated. The structure and morphology of the mesoporous silica particles were characterized via scanning electron microscopy (SEM) and N2 sorption technique. Mesoporous silica particles with particle diameters ranging from 0.5 to 1.6 microm were produced whilst the BET surface area was in the range of 31-123 m2 g-1. Their pore size could be adjusted from 14.1 to 28.8 nm by increasing the starting particle diameter from 20-30 nm up to 70-100 nm. A simple and cost effective method is reported that should open up new opportunities for the synthesis of scalable host materials with controllable structures.  相似文献   

4.
A novel method for synthesis of silica nanoparticles   总被引:7,自引:0,他引:7  
A sequential method has been used, for the first time, to prepare monodisperse and uniform-size silica nanoparticles using ultrasonication by sol-gel process. The silica particles were obtained by hydrolysis of tetraethyl orthosilicate (TEOS) in ethanol medium and a detailed study was carried out on the effect of different reagents on particle sizes. Various-sized particles in the range 20-460 nm were synthesized. The reagents ammonia (2.8-28 mol L(-1)), ethanol (1-8 mol L(-1)), water (3-14 mol L(-1)), and TEOS (0.012-0.12 mol L(-1)) were used and particle size was examined under scanning electron microscopy and transmission electron microscopy. In addition to the above observations, the effect of temperature on particle size was studied. The results obtained in the present study are in agreement with the results observed for the electronic absorption behavior of silica particles, which was measured by UV-vis spectrophotometry.  相似文献   

5.
The influence of primary particle diameter and the degree of agglomeration of flame-made silica agglomerate suspensions in aqueous solutions is studied by high-pressure dispersion (up to 1500 bar) through a nozzle with a 125 microm inner diameter. These particles were produced (4-15 g/h) by oxidation of hexamethyldisiloxane (HMDSO) in a coflow diffusion flame reactor. Their average primary particle size (10-50 nm) and degree of agglomeration were controlled by varying the oxygen and precursor flow rates. The particles were characterized by nitrogen adsorption, electron microscopy, and small-angle X-ray scattering. Hydrodynamic stresses break up soft agglomerates and yield hard agglomerate sizes in the range of 100-180 nm, as characterized by dynamic light scattering. Soft agglomerates exhibited decreasing light scattering diameters with increasing dispersion pressure, while hard agglomerates were insensitive.  相似文献   

6.
A novel high surface area heterogeneous catalyst based on solution phase colloidal nanoparticle chemistry has been developed. Monodisperse platinum nanoparticles of 1.7-7.1 nm have been synthesized by alcohol reduction methods and incorporated into mesoporous SBA-15 silica during hydrothermal synthesis. Characterization of the Pt/SBA-15 catalysts suggests that Pt particles are located within the surfactant micelles during silica formation leading to their dispersion throughout the silica structure. After removal of the templating polymer from the nanoparticle surface, Pt particle sizes were determined from monolayer gas adsorption measurements. Infrared studies of CO adsorption revealed that CO exclusively adsorbs to atop sites and red-shifts as the particle size decreases suggesting surface roughness increases with decreasing particle size. Ethylene hydrogenation rates were invariant with particle size and consistent with a clean Pt surface. Ethane hydrogenolysis displayed significant structure sensitivity over the size range of 1-7 nm, while the apparent activation energy increased linearly up to a Pt particle size of approximately 4 nm and then remained constant. The observed rate dependence with particle size is attributed to a higher reactivity of coordinatively unsaturated surface atoms in small particles compared to low-index surface atoms prevalent in large particles. The most reactive of these unsaturated surface atoms are responsible for ethane decomposition to surface carbon. The ability to design catalytic structures with tunable properties by rational synthetic methods is a major advance in the field of catalyst synthesis and for the development of accurate structure-function relationships in heterogeneous reaction kinetics.  相似文献   

7.
Commercial-grade fumed silica was dispersed by mechanical shearing and/or ultrasonic force to produce dispersed silica particles with different sizes. The light-scattering technique and a diagrammatic method of extrapolation used to eliminate the influence of particle interaction were applied to determine the size of the particles. Then, the effect of particle size on the gelation of fumed silica in sulphuric acid medium, as well as some electrochemical properties, such as ion transfer and redox capacities of lead, in the gelled electrolyte were examined. The results showed that the size of dispersed particles affected the gelation of fumed silica itself: with increasing size, the thixotropy of the system increased and the gelling time decreased, particularly for those particles obtained only by simple stirring. The strength of the gel increased with increasing particle size. At an identical silica content, the increase in particle size led to a decrease in the density of the particles: this weakened the three-dimensional structure of the silica particle network and reduced the efficiency of ion transfer. However, the effect of silica particle size on the redox capacities of lead was negligible.  相似文献   

8.
Platinum nanoparticles in the size range of 1.7-7.1 nm were produced by alcohol reduction methods. A polymer (poly(vinylpyrrolidone), PVP) was used to stabilize the particles by capping them in aqueous solution. The particles were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). TEM investigations demonstrate that the particles have a narrow size distribution. Mesoporous SBA-15 silica with 9-nm pores was synthesized by a hydrothermal process and used as a catalyst support. After incorporation into mesoporous SBA-15 silica using low-power sonication, the catalysts were calcined to remove the stabilizing polymer from the nanoparticle surface and reduced by H2. Pt particle sizes determined from selective gas adsorption measurements are larger than those determined by bulk techniques such as XRD and TEM. Room-temperature ethylene hydrogenation was chosen as a model reaction to probe the activity of the Pt/SBA-15 materials. The reaction was shown to be structure insensitive over a series of Pt/SBA-15 materials with particle sizes between 1.7 and 3.6 nm. The hydrogenolysis of ethane on Pt particles from 1.7 to 7.1 nm was weakly structure sensitive with smaller particles demonstrating higher specific activity. Turnover rates for ethane hydrogenolysis increased monotonically with increasing metal dispersion, suggesting that coordinatively unsaturated metal atoms present in small particles are more active for C2H6 hydrogenolysis than the low index planes that dominate in large particles. An explanation for the structure sensitivity is suggested, and the potential applications of these novel supported nanocatalysts for further studies of structure-activity and structure-selectivity relationships are discussed.  相似文献   

9.
Reduction of through-pore size and skeleton size of a monolithic silica column was attempted to provide high separation efficiency in a short time. Monolithic silica columns were prepared to have various sizes of skeletons (approximately 1-2 microm) and through-pores (approximately 2-8 microm) in a fused-silica capillary (50-200 microm I.D.). The columns were evaluated in HPLC after derivatization to C18 phase. It was possible to prepare monolithic silica structures in capillaries of up to 200 microm I.D. from a mixture of tetramethoxysilane and methyltrimethoxysilane. As expected, a monolithic silica column with smaller domain size showed higher column efficiency and higher pressure drop. High external porosity (> 80%) and large through-pores resulted in high permeability (K = 8 x 10(-14) -1.3 x 10(-12) m2) that was 2-30 times higher than that of a column packed with 5-mirom silica particles. The monolithic silica columns prepared in capillaries produced a plate height of about 8-12 microm with an 80% aqueous acetonitrile mobile phase at a linear velocity of 1 mm/s. Separation impedance, E, was found to be as low as 100 under optimum conditions, a value about an order of magnitude lower than reported for conventional columns packed with 5-microm particles. Although a column with smaller domain size generally resulted in higher separation impedance and the lower total performance, the monolithic silica columns showed performance beyond the limit of conventional particle-packed columns under pressure-driven conditions.  相似文献   

10.
Owing to its combination of unique selectivity and mechanical strength, commercial carbon clad zirconia (C/ZrO2) has been widely used for many applications, including fast two-dimensional liquid chromatography (2DLC). However, the low surface area available (only 20–30 m2/g for commercial porous ZrO2) limits its retentivity. We have recently addressed this limitation by developing a carbon phase coated on the high surface area of HPLC grade alumina (C/Al2O3). This material provides higher retentivity and comparable selectivity, but its use is still limited by how few HPLC quality types of alumina particles (e.g., particle size, surface area, and pore size) are available. In this work, we have developed useful carbon phases on silica particles, which are available in various particle sizes, pore sizes and forms of HPLC grade. To make the carbon phase on silica, we first treat the silica surface with a monolayer or less of metal cations that bind to deprotonated silanols to provide catalytic sites for carbon deposition. After Al (III) treatment, a carbon phase is formed on the silica surface by chemical vapor deposition at 700 °C using hexane as the carbon source. The amount of Al (III) on the surface was varied to assess its effect on carbon deposition, and the carbon loading was varied at different Al (III) levels to assess its effect on the chromatographic properties of the various carbon adsorbents. We observed that use of a concentration of Al (III) corresponding to a full monolayer leads to the most uniform carbon coating. A carbon coating sufficient to cover all the Al (III) sites, required about 4–5 monolayers in this work, provided the best chromatographic performance. The resulting carbon phases behave as reversed phases with reasonable efficiency (50,000–79,000 plates/m) for non-aromatic test species.  相似文献   

11.
Chromatographic performance of a chiral stationary phase is significantly influenced by the employed solid support. Properties of the most commonly used support, silica particles, such as size and size distribution, and pore size are of utmost importance for both superficially porous particles and fully porous particles. In this work, we have focused on evaluation of fully porous particles from three different vendors as solid supports for a brush‐type chiral stationary phase based on 9‐Otert‐butylcarbamoyl quinidine. We have prepared corresponding stationary phases under identical experimental conditions and determined the parameters of the modified silica by physisorption measurements and scanning electron microscopy. Enantiorecognition properties of the chiral stationary phases have been studied using preferential sorption experiments. The same material was slurry‐packed into chromatographic columns and the chromatographic properties have been evaluated in liquid chromatography. We show that preferential sorption can provide valuable information about the influence of the pore size and total pore volume on the interaction of analytes of different size with the chirally‐modified silica surface. The data can be used to understand differences observed in chromatographic evaluation of the chiral stationary phases. The combination of preferential sorption and liquid chromatography separation can provide detailed information on new chiral stationary phases.  相似文献   

12.
Ground porous silica monolith particles with an average particle size of 2.34 μm and large pores (363 Å) exhibiting excellent chromatographic performance have been synthesized on a relatively large scale by a sophisticated sol–gel procedure. The particle size distribution was rather broad, and the d(0.1)/d(0.9) ratio was 0.14. The resultant silica monolith particles were chemically modified with chlorodimethyloctadecylsilane and end‐capped with a mixture of hexamethyldisilazane and chlorotrimethylsilane. Very good separation efficiency (185 000/m) and chromatographic resolution were achieved when the C18‐bound phase was evaluated for a test mixture of five benzene derivatives after packing in a stainless‐steel column (1.0 mm × 150 mm). The optimized elution conditions were found to be 70:30 v/v acetonitrile/water with 0.1% trifluoroacetic acid at a flow rate of 25 μL/min. The column was also evaluated for fast analysis at a flow rate of 100 μL/min, and all the five analytes were eluted within 3.5 min with reasonable efficiency (ca. 60 000/m) and resolution. The strategy of using particles with reduced particle size and large pores (363 Å) combined with C18 modification in addition to partial‐monolithic architecture has resulted in a useful stationary phase (C18‐bound silica monolith particles) of low production cost showing excellent chromatographic performance.  相似文献   

13.
Porous silica beads with an average particle diameter between 0.2 and 3 microm have been applied as packing material in capillary electrochromatography (CEC). The experiments were directed to investigate whether it is really feasible and as promising as expected to use such small particles. In CEC, plate heights of H approximately/= 1-2 d(p) can be achieved which is smaller than the plate heights usually attained in high-performance liquid chromatography. Using a capillary packed with 0.5 microm silica beads we achieved a plate height of H = 3 d(p) indicating the presence of dispersive effects like Joule heating. Calculations demonstrate that at a field strength of about 800 V cm(-1) one third of the plate height can be lost by Joule heating effects if the heat is not removed by a cooling system. Additionally, the H(u) curve is still descending at the maximum electroosmotic flow (EOF) velocity we generated with the modified capillary electrophoresis instrument. To fully exploit the potential of submicron size silicas higher field strengths, i.e., higher EOF velocities, must be attained. To study the influence of the kind of packing on the EOF porous as well as nonporous silicas have been applied. The experiments clearly indicate that the EOF of porous and nonporous silicas is the same. Since the EOF is more or less exclusively generated by the packing material the zeta potential of n-octyl bonded 0.5 microm silica has been determined. The dependence of the zeta potential on the pH is identical to the dependence of the EOF on the pH in a packed capillary. The point of zero charge of the silica is at pH 2-3.  相似文献   

14.
Tian R  Sun J  Zhang H  Ye M  Xie C  Dong J  Hu J  Ma D  Bao X  Zou H 《Electrophoresis》2006,27(4):742-748
A new mesoporous sphere-like SBA-15 silica was synthesized and evaluated in terms of its suitability as stationary phases for CEC. The unique and attractive properties of the silica particle are its submicrometer particle size of 400 nm and highly ordered cylindrical mesopores with uniform pore size of 12 nm running along the same direction. The bare silica particles with submicrometer size have been successfully employed for the normal-phase electrochromatographic separation of polar compounds with high efficiency (e.g., 210,000 for thiourea), which is matched well with its submicrometer particle size. The Van Deemeter plot showed the hindrance to mass transfer because of the existence of pore structure. The lowest plate height of 2.0 microm was obtained at the linear velocity of 1.1 mm/s. On the other hand, because of the relatively high linear velocity (e.g., 4.0 mm/s) can be generated, high-speed separation of neutral compounds, anilines, and basic pharmaceuticals in CEC with C18-modified SBA-15 silica as stationary phases was achieved within 36, 60, and 34 s, respectively.  相似文献   

15.
Monolithic silica capillary columns were successfully prepared in a fused silica capillary of 530 microm inner diameter and evaluated in HPLC after octadecylsilylation (ODS). Their efficiency and permeability were compared with those of columns pakked with 5-microm and 3-microm ODS-silica particles. The monolithic silica columns having different domain sizes (combined size of through-pore and skeleton) showed 2.5-4.0-times higher permeability (K= 5.2-8.4 x 10(-14) m2) than capillary columns packed with 3-mm particles, while giving similar column efficiency. The monolithic silica capillary columns gave a plate height of about 11-13 microm, or 11 200-13 400 theoretical plates/150 mm column length, in 80% methanol at a linear mobile phase velocity of 1.0 mm/s. The monolithic column having a smaller domain size showed higher column efficiency and higher pressure drop, although the monolithic column with a larger domain size showed better overall column performance, or smaller separation impedance (E value). The larger-diameter (530 microm id) monolithic silica capillary column afforded a good peak shape in gradient elution of proteins at a flow rate of up to 100 microL/min and an injection volume of up to 10 microL.  相似文献   

16.
Air bubbles have been formed using partially hydrophobic silica nanoparticles as the stabilizer. The particles were of primary particle size 20 nm, chemically treated to different degrees with dichlorodimethylsilane to render them partially hydrophobic. Above a certain bubble size range (typically 80-microm diameter), the bubbles seemed to be almost indefinitely stable, while for any size above 20 microm their stability against disproportionation is far better than bubbles stabilized by any protein film investigated in previous studies. A possible theoretical justification for this observation is presented. Bubbles could be formed by shaking water with the particles, but a much higher volume fraction of bubbles was obtained by pressurizing the aqueous phase to 5 atm overnight followed by suddenly releasing the pressure to nucleate bubbles within the silica dispersion. Sonicating the silica dispersion before nucleation also gave more bubbles, which were also found to be more stable. There appeared to be an optimum degree of surface hydrophobicity that gave maximum foamability and foam stability, where around 20-33% of the silanol groups on the silica surface had been converted to dimethylsilane groups. However, a sharp increase in stability occurred when between 1.8 and 2 mol dm(-3) NaCl was also included in the aqueous phase. The change in stability due to inclusion of salt can be rationalized in terms of changes occurring in the value of the particle contact angle. The effects of increasing sonication and an optimum surface chemical treatment can be explained by the need to make the particles sufficiently hydrophobic so that they adsorb strongly enough, while at the same time minimizing their tendency to aggregate in the bulk aqueous phase, which hinders their adsorption. Furthermore, confocal laser scanning microscopy of the bubble dispersions suggests that a large volume fraction of stable bubbles is only formed when the particles adsorbed to the bubbles are also part of a spanning silica particle network in the bulk aqueous solution, forming a weak gel with a finite yield stress.  相似文献   

17.
The network structure of silica aerogels heated at 300, 400 and 500°C in dried air have been determined by neutron total scattering measurements using a pulsed spallation neutron source. SANS experiments were also performed to obtain the particle size of the silica constituting aerogel. The elementary particle size obtained is about 13Å in diameter. The distances of the Si-O and O-O interactions in such fine silica particles are 1.61 and 2.64 Å, respectively, which are the same as those of fused silica. The coordination numbers of these pairs are found to be less evident than those of fused silica. In addition, the distances of the Si-Si pairs in the aerogels are slightly longer than that of fused silica. According to the heat treatment temperature, the coordination numbers of the Si-O and O-O interactions increase and the distance of the Si-Si pair decreases. These results indicate that although the network structure of fine silica particles treated at lower temperature is loose and imperfect, such structure can be changed by heating at relatively low temperature. The Raman spectra and the skeletal density measurements of the aerogels support also these results.  相似文献   

18.
This work represents a first systematic approach to the size-based elemental quantification and size estimation of metal(loid) oxide nanoparticles such as silica (SiO2) in a real food matrix using asymmetric flow field-flow fractionation coupled online with inductively coupled plasma mass spectrometry (ICP-MS) and multi-angle light scattering (MALS) and offline with transmission electron microscopy (TEM) with energy-dispersive X-ray analysis (EDAX). Coffee creamer was selected as the model sample since it is known to contain silica as well as metal oxides such as titania at the milligramme per kilogramme levels. Optimisation of sample preparation conditions such as matrix-to-solvent ratio, defatting with organic solvents and sonication time that may affect nanoparticle size and size distribution in suspensions was investigated. Special attention was paid to the selection of conditions that minimise particle transformation during sample preparation and analysis. The coffee creamer matrix components were found to stabilise food grade SiO2 particles in comparison with water suspensions whilst no significant effect of defatting using hexane was found. The use of sample preparation procedures that mimic food cooking in real life was also investigated regarding their effect on particle size and particle size distribution of silica nanoparticles in the investigated food matrix; no significant effect of the water temperature ranging from ambient temperature to 60 °C was observed. Field-flow fractionation coupled to inductively coupled plasma-mass spectrometry (FFF-ICP-MS) analysis of extracts of both unspiked coffee creamer and coffee creamer spiked with food grade silicon dioxide, using different approaches for size estimation, enabled determination of SiO2 size-based speciation. Element-specific detection by ICP-MS and post-FFF calibration with elemental calibration standards was used to determine the elemental composition of size fractions separated online by FFF. Quantitative data on mass balance is provided for the size-based speciation of the investigated inorganic nano-objects in the complex matrix. The combination of FFF with offline fractionation by filtration and with detection by ICP-MS and TEM/EDAX has been proven essential to provide reliable information of nanoparticle size in the complex food matrix.
Figure
Characterisation of silica nanoparticles in a coffee creamer matrix using FFF-based methodology  相似文献   

19.
A new combined micromixer/microreactor/batch reactor system for the synthesis of monodisperse silica particles was demonstrated, which showed superiorities over the batch reactor. The silica nanoparticles with different sizes (ranging from 20 nm to 2 μm) and size distributions could be controllably synthesized by varying the reaction temperature and reaction time. The narrowest size distribution of the silica particles was synthesized at 60 °C. The transmission electron microscopy characterization showed that the sphericities of silica particles got better as the particle size increased. Thermal gravimetry–differential thermal analysis and Fourier transform infrared characterization indicated that the amount of ethoxy groups of silica particles decreased and the hydroxyl groups increased with the reaction time increasing. And the hydroxyl groups in silica particles increased with the reaction temperature rising.  相似文献   

20.
The interaction of amorphous colloidal silica (SiO(2)) nanoparticles of well-defined sizes with a dioleoyl phosphatidylcholine (DOPC) monolayer on a mercury (Hg) film electrode has been investigated. It was shown using electrochemical methods and microcalorimetry that particles interact with the monolayer, and the electrochemical data shows that the extent of interaction is inversely proportional to the particle size. Scanning electron microscopy (SEM) images of the electrode-supported monolayers following exposure to the particles shows that the nanoparticles bind to the DOPC monolayer irrespective of their size, forming a particle monolayer on the DOPC surface. A one-parameter model was developed to describe the electrochemical results where the fitted parameter is an interfacial layer thickness (3.2 nm). The model is based on the adsorptive interactions operating within this interfacial layer that are independent of the solution pH and solution ionic strength. The evidence implies that the most significant forces determining the interactions are van der Waals in character.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号