共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper investigates the chaos control of a class of fractional-order chaotic systems via sliding mode. First, the sliding
mode control law is derived to make the states of the fractional-order chaotic systems asymptotically stable. Second, the
designed control scheme guarantees asymptotical stability of the uncertain fractional-order chaotic systems in the presence
of an external disturbance. Finally, simulation results are given to demonstrate the effectiveness of the proposed sliding
mode control method. 相似文献
2.
3.
4.
In this paper, a novel adaptive fractional-order feedback controller is first developed by extending an adaptive integer-order feedback controller. Then a simple but practical method to synchronize almost all familiar fractional-order chaotic systems has been put forward. Through rigorous theoretical proof by means of the Lyapunov stability theorem and Barbalat lemma, sufficient conditions are derived to guarantee chaos synchronization. A wide range of fractional-order chaotic systems, including the commensurate system and incommensurate case, autonomous system, and nonautonomous case, is just the novelty of this technique. The feasibility and validity of presented scheme have been illustrated by numerical simulations of the fractional-order Chen system, fractional-order hyperchaotic Lü system, and fractional-order Duffing system. 相似文献
5.
This paper presents a decoupled terminal sliding mode control (DTSMC) and a nonsingular decoupled terminal sliding mode control (NDTSMC) method for a class of fourth-order nonlinear systems. First, the nonlinear fourth-order system is decoupled into two (primary and secondary) second-order subsystems. The sliding surface of each subsystem was designed by utilizing time-varying coefficients, which are computed by linear functions derived from the input–output mapping of the one-dimensional fuzzy rule bases. Then the control target of the secondary subsystem was embedded to the primary subsystem by the help of an intermediate signal. Thereafter, the DTSMC and the NDTSMC methods were utilized separately to ensure that both subsystems converge to their equilibrium points. The inverted pendulum system was used in the simulations and results were given to show the effectiveness of the proposed methods. It is seen that the proposed methods exhibit a considerable improvement in terms of a faster dynamic response and lower IAE and ITAE values as compared with the existing decoupled control methods in the literature. 相似文献
6.
Integral sliding mode control for fractional-order systems with mismatched uncertainties 总被引:1,自引:0,他引:1
This paper presents the integral sliding mode control for fractional-order systems with input disturbance and mismatched uncertainties. For fractional-order systems with the fractional order α satisfying 0<α<1 and 1<α<2, two theorems are proposed to design the stable integral sliding mode surfaces by the LMI conditions and the properties of the Kronecker product, respectively. Moreover, the integral sliding mode control is designed to eliminate the reaching stage for enhancing the robustness of fractional-order systems. Two examples are given to verify the effectiveness of the proposed methods. 相似文献
7.
Sajjad Shoja Majidabad Heydar Toosian Shandiz Amin Hajizadeh 《Nonlinear dynamics》2014,77(1-2):119-134
This paper presents some novel discussions on fully decentralized and semi-decentralized control of fractional-order large-scale nonlinear systems with two distinctive fractional derivative dynamics. First, two decentralized fractional-order sliding mode controllers with different sliding surfaces are designed. Stability of the closed-loop systems is attained under the assumption that the uncertainties and interconnections among the subsystems are bounded, and the upper bound is known. However, determining the interconnections and uncertainties bound in a large-scale system is troublesome. Therefore in the second step, two different fuzzy systems with adaptive tuning structures are utilized to approximate the interconnections and uncertainties. Since the fuzzy system uses the adjacent subsystem variables as its own input, this strategy is known as semi-decentralized fractional-order sliding mode control. For both fully decentralized and semi-decentralized control schemes, the stability of closed-loop systems has been analyzed depend on the sliding surface dynamics by integer-order or fractional-order stability theorems. Eventually, simulation results are presented to illustrate the effectiveness of the suggested robust controllers. 相似文献
8.
Nonlinear Dynamics - In this study, a new fractional-order dynamic sliding mode control (FDSMC) for a class of nonlinear systems is presented. In FDSMC, an integrator is placed before the input... 相似文献
9.
Nonlinear Dynamics - This paper deals with chaos synchronization problem between two different uncertain fractional-order (FO) chaotic systems with disturbance based on FO Lyapunov stability... 相似文献
10.
11.
12.
In this paper, we focus on the synchronization between integer-order chaotic systems and a class of fractional-order chaotic system using the stability theory of fractional-order systems. A new fuzzy sliding mode method is proposed to accomplish this end for different initial conditions and number of dimensions. Furthermore, three examples are presented to illustrate the effectiveness of the proposed scheme, which are the synchronization between a fractional-order Lü chaotic system and an integer-order Liu chaotic system, the synchronization between a fractional-order hyperchaotic system based on Chen??s system and an integer-order hyperchaotic system based upon the Lorenz system, and the synchronization between a fractional-order hyperchaotic system based on Chen??s system, and an integer-order Liu chaotic system. Finally, numerical results are presented and are in agreement with theoretical analysis. 相似文献
13.
Nonlinear Dynamics - This paper presents a sliding mode control scheme for chaotic systems. Finite time stability of the system states is realized by implementing the proposed controller, which is... 相似文献
14.
In this paper, a new adaptive fuzzy sliding mode (AFSM) observer is proposed which can be used for a class of MIMO nonlinear systems. In the proposed algorithm, the zero-input dynamics of the plant could be unknown. In this method, a fuzzy system is designed to estimate the nonlinear behavior of the observer. The output of fuzzy rules are tuned adaptively, based on the observer error. The output connection matrix is used to combine the observer errors of individual subsystems. A robust term, which is designed based on the sliding mode theory, is added to the observer to compensate the fuzzy estimation error. The estimation error bound is adjusted by an adaptive law. The main advantage of the proposed observer is that, unlike many of the previous works, the measured outputs is not limited to the first entries of a canonical-form state vector. The proposed observer estimates the closed-loop state tracking error asymptotically, provided that the output gain matrix includes Hurwitz coefficients. The chattering is eliminated by using boundary layers around the sliding surfaces and the observer convergence is proved using a Lyapunov-based approach. The proposed method is applied on a real multilink robot manipulator. The performance of the observer shows its effectiveness in the real world. 相似文献
15.
This paper brings attention to the chaotic antisynchronization and synchronization for a novel class of chaotic systems with different structure and dimensions by using a new sliding mode control strategy. This approach needs only n?1 controllers, where n is the number of the salve system dimensions. And our method uses proportional integral (PI) surface and saturation function to simplify the task of assigning the performance of the closed-loop error system in sliding motion. Furthermore, the sufficient conditions are derived, and representative examples are proposed as well. Finally, numerical simulations are provided to verify the effectiveness and feasibility of the proposed control scheme, which are in agreement with theoretical analysis. 相似文献
16.
This paper presents an adaptive terminal sliding mode control method for anti-synchronization of uncertain chaotic systems. By fusion of the terminal sliding mode control and the adaptive control techniques, a robust controller is designed so that the states tracking error can reach the terminal sliding mode surface and converge to zero in a finite time. Finally, some simulation results are included to demonstrate the effectiveness and the feasibility of the proposed anti-synchronization scheme. 相似文献
17.
This paper is devoted to study the problem of modified projective synchronization of fractional-order chaotic system. Base on the stability theorems of fractional-order linear system, active sliding mode controller is proposed to synchronize two different fractional-order systems. Moreover, the controller is robust to the bounded noise. Numerical simulations are provided to show the effectiveness of the analytical results. 相似文献
18.
Mohammad Pourmahmood Aghababa 《Nonlinear dynamics》2012,69(1-2):247-261
In this paper, a novel fractional-order terminal sliding mode control approach is introduced to control/synchronize chaos of fractional-order nonautonomous chaotic/hyperchaotic systems in a given finite time. The effects of model uncertainties and external disturbances are fully taken into account. First, a novel fractional nonsingular terminal sliding surface is proposed and its finite-time convergence to zero is analytically proved. Then an appropriate robust fractional sliding mode control law is proposed to ensure the occurrence of the sliding motion in a given finite time. The fractional version of the Lyapunov stability is used to prove the finite-time existence of the sliding motion. The proposed control scheme is applied to control/synchronize chaos of autonomous/nonautonomous fractional-order chaotic/hyperchaotic systems in the presence of both model uncertainties and external disturbances. Two illustrative examples are presented to show the efficiency and applicability of the proposed finite-time control strategy. It is worth to notice that the proposed fractional nonsingular terminal sliding mode control approach can be applied to control a broad range of nonlinear autonomous/nonautonomous fractional-order dynamical systems in finite time. 相似文献
19.
This paper considers the design of adaptive sliding mode control approach for synchronization of a class of fractional-order arbitrary dimensional hyperchaotic systems with unknown bounded disturbances. This approach is based on the principle of sliding mode control and adaptive compensation term for solving the problem of synchronization of the unknown parameters in fractional-order nonlinear systems. In particular, a novel fractional-order five dimensional hyperchaotic system has been introduced as a representative example. Furthermore, global stability and asymptotic synchronization between the outputs of master and slave systems can be achieved based on the modified Lyapunov functional and fractional stability condition. Simulation results are provided in detail to illustrate the performance of the proposed approach. 相似文献
20.
Adaptive terminal sliding mode control for nonlinear differential inclusion systems with disturbance
This paper deals with the adaptive terminal sliding mode control for nonlinear differential inclusion systems subjected to disturbance. The upper bound of the disturbance is unknown. First, the fast terminal sliding mode surface is established and sufficient condition for fast convergence is given. Then the adaptive sliding mode controller is designed to make the state of system arrive at the sliding mode in finite time. A numerical example is provided to show the effectiveness of the proposed method. 相似文献