首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
研究了阴离子型与阳离子型聚硅氧烷乳液的耐酸碱稳定性。发现阴离子型乳液对酸碱都相当稳定,在乳液制备过程中,酸性催化剂不会引起乳液颗粒的凝聚;而阳离子型乳液的耐酸碱稳定性较差,尤其是引起乳液颗粒慢速凝聚的碱浓度下限值很低,碱是制备阳离子型乳液的催化剂,碱引起乳液颗粒的慢速凝聚是阳离子型乳液中大颗粒形成的主要原因。在乳液聚合过程中所发生的相当部分的乳化剂从水相向有机硅相的转移也是影响阳离子型乳液稳定性的一个重要因素。  相似文献   

2.
二甲基聚硅氧烷阴离子型乳液的稳定性   总被引:1,自引:0,他引:1  
作为织物柔软剂,二甲基聚硅氧烷阴离子型稀乳液的耐电解质稳定性对实际应用有着重要的意义。然而有关这方面的报道极少,而关于非离子型和阴离子型表面活性剂对它的电解质凝聚稳定性的影响至今未见报道。  相似文献   

3.
Is latex surface charge an important parameter for foam stabilization?   总被引:1,自引:0,他引:1  
We describe the facile production of highly stable foams stabilized solely by cationic polystyrene latex particles. Three model polystyrene latexes were synthesized using either a cationic 2,2'-azobis(2-diisobutyramidine) dihydrochloride (AIBA) or an anionic ammonium persulfate (APS) radical initiator: a 724 +/- 81 nm charge-stabilized cationic polystyrene latex [AIBA-PS], an 800 +/- 138 nm sterically stabilized cationic latex prepared using a poly(ethylene glycol) monomethacrylate macromonomer [PEGMA-AIBA-PS], and a 904 +/- 131 nm charge-stabilized anionic polystyrene latex [APS-PS], respectively. The effect of particle surface charge, latex concentration, and solution pH on foam stability was studied in detail. The PEGMA-AIBA-PS latex proved to be the best foam stabilizer even at relatively low latex concentrations (3.0 wt %), with long-term foam stabilities being obtained after drying. The AIBA-PS latex also produced stable foams, albeit only at higher latex concentrations. However, the APS-PS latex proved to be an ineffective foam stabilizer. This is believed to be primarily due to the anionic surface character of this latter latex, which prevents its adsorption at the anionic air-water interface. This hypothesis is supported by the observation that the AIBA-PS latex no longer acts as an effective foam stabilizer above its isoelectric point (pH 7.04). Scanning electron microscopy studies revealed the formation of well-defined latex bilayers within dried foams, which indicates that the wet air bubbles are stabilized by latex monolayers prior to drying. However, little or no long-range ordering of the latex particles was observed on the surface of the bubbles, which is presumably related to the latex polydispersity.  相似文献   

4.
A series of non-ionic polystyrene latices in aqueous media containing particles with a narrow size distribution have been prepared using a nonyl phenol poly(ehylene glycol) condensate as the surfactant, methoxy poly(ethylene glycol methacrylate) as the comonomer/stabilizer, and ascorbic acid/hydrogen peroxide as the initiator system. As a control synthesis for comparison with the above latex, a charge stabilized polystyrene latex was prepared, using an anionic surfactant and potassium persulphate as the initiator. Latices employing a combination of charge plus steric stabilization mechanisms were also prepared, in order to investigate the effect of the non-ionic surfactant and the comonomer/stabilizer. The particle size of the latices was measured by transmission electron microscopy, the surface charge density by conductimetric titration and the glass transition temperature of the polymer by differential scanning calorimetry. The latex prepared using non-ionic ingredients, showed no titratable charge and exhibited a profound lowering of the glass transition temperature, with respect to the charge stabilized latex. On the basis of these results, schematic models for the polymerization mechanism and the morphology of the latex particles are proposed.  相似文献   

5.
The preparation of zwitterionic latex particles is reported by using a mixed anionic and cationic initiator system without requiring surface-active agents. Isoelectric points were found from microelectrophoresis experiments and were in the pH range of 3.5-5. Close to the isoelectric point, the latices coagulated as expected, and good stability was achieved outside this narrow range. This range of stability was in good agreement with predictions from current theory. Redispersion after coagulation was found to be difficult as was expected for a hydrophobic colloid. The electrokinetic behavior did not result in the maximum in zeta potential at an electrolyte concentration of 1 mM unlike the situation for other hydrophobic polystyrene latex particles, and hence these systems may be even better models for other colloidal studies.  相似文献   

6.
Crosslinked highly carboxylated acrylic latices with narrow particle size distributions were prepared by emulsion polymerization and characterized carefully by different AUC techniques (particle size distributions and particle density measurements). The acid form of those latices was neutralized with metal oxides like MgO, CaO, ZnO, or PbO in order to obtain the corresponding salt form of the latices which again were characterized carefully. The kinetics of the ion exchange between latex particles were studied by mixing, for example, the acid and the salt form of the latices monitoring the density distribution of the latex particles by density gradient ultracentrifugation. With all latices the hydrogen-metal ion exchange tends to be a complete one provided this process is given a sufficiently long exchange time. Theoretical models are provided which yield a qualitative explanation of the experimental data.  相似文献   

7.
孔祥正 《高分子科学》2012,30(2):278-286
Cationic latexes were prepared through emulsion copolymerization of styrene(St) and butyl acrylate(BA) with a cationic surfactant,cetyl trimethyl ammonium bromide(CTAB).Latex properties,including particle size,size distribution,ζpotential,surface tension and monomer conversion,were determined for latexes prepared with different CTAB amounts. Evolution of these properties during emulsion polymerization was followed in order to understand the mechanism of the particles formation.Results showed that both particle size andζpotential were function of polymerization time and latex solids.Parallel emulsion polymerizations with cationic,anionic charged initiator and charge-free initiators were also carried out,the latex properties were determined at different polymerization time.All these results were attentively interpreted based on the mechanisms of emulsion polymerization,surfactant adsorption and latex particle stabilization.  相似文献   

8.
30wt% solid content, anionic seed copolymer latex P(methyl acrylate-co-methyl methacrylate) was prepared by conventional emulsion polymerization, and then the seeded emulsion polymerization was carried out accompanied with the electrostatic coagulation during the reaction in the presence of counter-ion species, such as cationic monomer and initiator. In this article, effects of cationic monomer (dimethyl aminoethyl methacrylate, DM) content, secondary monomer to seed polymer weight ratio, M/P and amount of emulsifier (polyoxyethylene nonylphenylether with 23 units of ethylene oxide, PEO23) were investigated on the effective particle growth and the stability of final latex. With 10wt% DM in monomer, M/P ratio at 2.0 were recommended. An optimal policy for handling the emulsifier content without the nucleation of secondary particles while achieving the controlled coagulative growth was proposed from the observations of polymer yield and particle size during the polymerization.  相似文献   

9.
使用2,2′-偶氮二异丁基脒二盐酸盐自由基引发剂,改变甲基丙烯酰氧乙基十六烷基二甲基溴化铵阳离子功能单体的量与苯乙烯进行乳液聚合获得不同粒径的阳离子乳胶粒,使用十二烷基硫酸钠为乳化剂和过硫酸钾为引发剂制备阴离子聚合物乳胶粒.采用基于静电相互作用的异凝聚法将以上2种带有相反电荷的乳胶粒组装,获得了表面粗糙程度不同的复合微粒.对异凝聚过程中复合液透光率和微粒大小及分布进行跟踪测试,并用透射电子显微镜表征了阳离子微粒、阴离子微粒以及复合微粒的形态和大小.结果表明,在一定范围内可以通过控制阴离子乳胶粒与阳离子乳胶粒的复合比例改变单个复合微粒表面阳离子小微粒的数目.  相似文献   

10.
Ion-free latices of styrene-butadiene rubber (SBR) and nitrile-butadiene rubber (NBR) were synthesized by emulsion polymerization with use of poly (vinyl pyrrolidone) (PVP) stabilizer. The goal was to prepare ion-free latex films, possessing dual-phase latex particle morphology, and swell the films with liquid electrolyte to yield dual-phase polymer electrolytes (DPE). SBR/PVP latex was prepared readily, but NBR/PVP latex was sensitive to coagulation. Differential scanning calorimetric (DSC) and scanning electron microscopic (SEM) analyses of latex films provided morphological evidence concerning particle structure and phase separation. Blends of NBR/PVP and PB/PVP latices (PB = polybutadiene) were also investigated, but particle structure was not present in the blended latex film, even though particle structure was present in the individual NBR/PVP and PB/PVP latex films. After extensive swelling of SBR/PVP latex films, PVP was extracted from the films, and ionic conductivities greater than 10?3 S/cm were achieved. © 1994-John Wiley & Sons, Inc.  相似文献   

11.
Aqueous film coatings often contain some electrolytes, organic acids, and pigments to give functions of sustained release, time-controlled release, or protection against light. Additions of some electrolytes or organic acids into latex dispersion for an aqueous film coating affect its colloidal stability. We characterized the aqueous polymeric latexes used in the pharmaceutical industry by measuring zeta potential and particle size, and evaluated this colloidal stability using DLVO theory. Three polymethacrylate-based aqueous polymeric latexes, Eudragit L30D-55, Eudragit RS30D and Eudragit NE30D, having anionic, cationic, and neutral polymer, respectively, were used in this study. The Hamaker constant of the polymethacrylate-based latex was determined to be 6.35 x 10(-21) J, and the total potential energy of the latex dispersion was calculated. The total potential energy of interaction between pairs of latex particles changes by altering the salt concentration and pH. The experimental results of stability in the anionic and the cationic latex dispersions can be explained by the total interaction energies. However, the stabilization of the neutral latex did not match the calculated result. The steric interaction produced by the surfactant likely resulted in the stable dispersion of this latex.  相似文献   

12.
《Colloids and Surfaces》1989,23(3):159-170
An emulsion polymerization of styrene in the presence of a zwitterionic emulsifier,N,N-dimethyl-n-laurylbetaine (LNB), was carried out at pH 7.0. The stability of mixed dispersions composed of latex particles prepared with the emulsifier (LNB) and titanium dioxide particles was studied as a function of pH. The zeta potential of the synthesized latex particles was significantly dependent on the pH and showed the existence of an isoelectric point. In the pH range of 3.0–8.3, where the latices are positively charged while titanium dioxide pigment particles are negatively charged, the mixed suspensions of the latices and titanium dioxide particles were dispersed but exhibited heterocoagulation with increasing particle number of the latices. Furthermore, titanium dioxide particles were restabilized with further addition of the latices. The mechanisms of these processes are discussed. A similar experiment was conducted with silica particles.  相似文献   

13.
Emulsifier-free latex of fluorinated acrylate copolymer   总被引:2,自引:0,他引:2  
Emulsifier-free latices of fluorinated acrylate copolymers were prepared by semicontinuous polymerization method, with perfluoroalkylethyl methacrylate (Zonyl TM) as a fluoromonomer. Ultrasonic at 40 kHz was adopted to help monomers disperse well in water. The relationships of polymerization conditions between the final conversion and polymerization stability were discussed in detail and the optimal polymerization condition was given. A fluorinated acrylate copolymer was finally obtained and its Tg was 54 °C. The average particle size of the latex was about 601 nm and the particle size distribution of the latex was narrow. The latex film exhibited a low surface free energy and good surface property. By using 6% Zonyl TM, the water contact angle of the film-air interface increased significantly and reached to 110.2°. Compared with the latex film of fluorine-free polyacrylate prepared under the similar polymerization condition, the fluorinated latex film had a better water-resistance and thermal stability.  相似文献   

14.
Poly(styrene-co-acrylic acid) (St/AA) latices were prepared by using a batch soap-free emulsion copolymerisation in non-buffered medium. Polymerisation kinetics, followed by gravimetric method, revealed that increasing AA comonomer concentration was directly proportional to the copolymerisation rate, while adding AA comonomer caused a strong decrease of particle size of final St/AA latex particle without affecting the size distribution. Transmission electron microscopy indicated that the particles were monodispersed and spherical in shape irrespective of AA amount used in the investigated range. The colloidal stability of the latices was increased upon increasing the AA concentration; owing to the electrosteric stabilisation originated from AA-rich layer on the particle surface. In addition, electrophoretic mobility of formed particles versus polymerisation conversion exhibited the constancy of the surface charge density during the polymerisation process and was inferred for discussion of the polymerisation mechanism of this system.  相似文献   

15.
Abstract

The stability of acrylic latices stabilized by poly(ethylene oxide) (PEO) is governed by the bridging flocculation process during polymerization. The final latex particle size increases with increasing concentration of initiator, PEO, or NaCl. The total scrap formed during the reaction increases rapidly with increasing NaCl concentration due to the ionic strength effect. It is shown that the final latex particle size decreases rapidly with an increase in the agitation speed. The amount of total scrap formed during polymerization is generally greater at a higher agitation speed. These results suggest that the fraction of the particle surface covered by PEO and the ratio of the thickness of the PEO adsorption layer to that of the electric double layer of the latex particles should play an important role in determining the final latex particle size and colloidal stability.  相似文献   

16.
A systematic study of the adsorption of charged nanoparticles at dispersed oil-in-water emulsion interfaces is presented. The interaction potentials for negatively charged hexadecane droplets with anionic polystyrene latex particles or cationic gold particles are calculated using DLVO theory. Calculations demonstrate that increased ionic strength decreases the decay length of the electrostatic repulsion leading to enhanced particle adsorption. For the case of anionic PS latex particles, the energy barrier for particle adsorption is also reduced when the surface charge is neutralized through changes in pH. Complementary small-angle scattering experiments show that the highest particle adsorption for PS latex occurs at moderate ionic strength and low pH. For cationic gold particles, simple DLVO calculations also explain scattering results showing that the highest particle adsorption occurs at neutral pH due to the electrostatic attraction between oppositely charged surfaces. This work demonstrates that surface charges of particles and oil droplets are critical parameters to consider when engineering particle-stabilized emulsions.  相似文献   

17.
An in‐depth study on the kinetics of the cationic emulsion polymerization of styrene in a batch reactor is presented. This study is focused on the effect of the amount of the cationic surfactant dodecyltrimethylammonium bromide (DTAB), using two different cationic initiators: 2,2′‐azobisisobutyramidine dihydrochloride (AIBA), 2,2′‐azobis (N,N′‐dimethyleneisobutyramidine) dihydrochloride (ADIBA), on kinetics and colloidal features such as conversion, number of particles, number average of radicals per particle, mean particle diameter, and particle size distribution (PSD) of the polystyrene latices obtained by emulsion polymerization in a batch reactor. Furthermore, the results of the cationic emulsion polymerization were compared with its homologous anionic case. Using DTAB as cationic surfactant an expected increase in the total rate of polymerization was observed when the DTAB concentration increased. However, the total number of particles increased much more than in the anionic system. On the other hand, a dependence on the particle size of the rate of polymerization per particle together with the average number of radicals per particle was found. These differences between cationic and anionic emulsion polymerizations were explained taking into account the limited particle coagulation observed with cationic surfactants, and the high rate of radical formation of cationic initiators. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4461–4478, 2006  相似文献   

18.
We report on the refinement of anionic and cationic nanoparticles of nonstoichometric polyelectrolyte complexes (PEC) by consecutive centrifugation, which was studied by dynamic light scattering (DLS), atomic force microscopy (AFM), colloid titration and infrared spectroscopy (IR). PEC dispersions were prepared by mixing poly(diallyldimethylammonium chloride) (PDADMAC) and sodium poly(maleic acid-alt-alpha-methylstyrene) (PMA-MS) at the monomolar mixing ratio of n-/n+ = 1.50 (anionic PEC) and 0.66 (cationic PEC), respectively, and the polymer concentration of c(POL) = 0.002 M. The particle size (Rh), titrable charge amount, and IR spectra were determined for both dispersions in the original state, after the first centrifugation and after the second centrifugation. Freshly prepared PEC dispersions contained two different particle sizes: around 10-25 nm (small particles) and around 100 nm (large particles). Consecutive centrifugation of freshly prepared PEC dispersions resulted in the separation of highly charged excess polyelectrolyte (PEL) and small PEC particles from a low charged coacervate phase of the desired larger PEC particles. After the second centrifugation, the coacervate phase of both dispersions PEC-1.50 and PEC-0.66 consisted of monomodal particles sizing around 100 nm. These results were supported by AFM measurements on the respective dispersions deposited on glass plates. PEC-1.50 particles tended to adopt slightly smaller sizes ( approximately 90 nm) in comparison to PEC-0.66 ones (approximately 110 nm). No significant influence of the PDADMAC molecular weight on the particle size was found. IR spectroscopy showed changes in the environment of the carboxylate groups of PMA-MS by consecutive centrifugation. The centrifuged PEC-1.50 dispersions showed remarkable long-term stability over more than a year. The high macroscopic stability of the studied PEC dispersions is presumably due to repulsive electrostatic interparticle interactions and attractive hydrophobic intraparticle interaction. The introduced monomodal PEC particles might be projected as latex analogues or as nanocarriers for drugs and proteins.  相似文献   

19.
Emulsifier-free emulsion copolymerization of styrene (St) and acrylamide (AAm) has been investigated in the presence of an amphoteric water-soluble initiator, 2,2′-azobis[N-(2-carboxyethyl)-2-2-methylpropionamidine]hydrate (VA057). The kinetics of polymerization and the colloidal properties of the resulting latices were studied and compared with the cases using ionic initiators. When adopting the amphoteric initiator at pHs lower than 10, stable amphoteric poly (St/AAm) latices, evidenced by the electrophoretic mobility, were prepared directly. Meanwhile, almost the same conversion versus time curves appeared and there were no apparent differences in the final particle sizes for those polymerizations, whereas in the polymerization at pH 10, a much lower rate of copolymerization and a larger size of particles were observed. The surface charge density and the growth rate of latex particles produced with VA057 at pH<10 were comparable to those of the particles with a cationic initiator, 2,2′-azobis(2-amidinopropane)dihydrochloride, but were apparently lower than those with an anionic initiator, potassium persulfate, when the polymerizations were carried out under corresponding conditions. The number of initiator fragments incorporated onto the particle surfaces was independent of polymerization pH, except for pH 10. The abnormal performance of VA057 at pH 10 was attributed to its degradation due to hydrolysis. Received: 14 December 1999 Accepted: 22 February 2000  相似文献   

20.
The considered method for obtaining hollow polymer particles is based on the following pathway: (1) preparation of a carboxylated core latex by emulsion copolymerization of acrylic monomers with methacrylic acid, (2) synthesis of a core-shell latex comprising a styrene (co)polymer shell, (3) neutralization of the core carboxylic groups with a base followed by the core ionization and hydration to a high degree, shell expansion and formation of water-filled hollows. A number of approaches to improve the hydrophilic core – hydrophobic shell compatibility and enlarge the hollow volume are considered. The synthesized hollow particles are of a submicron size with the relative hollow volume Vhol : Vpart.= 0.43 – 0.64. Methods for cationic hollow particle latex preparation by anionic latex recharging with a cationic surfactant or acidic melamine resin are discussed. Recharging with a melamine resin is shown to afford hollow particles with an external polymer shell providing a high thermal stability of the particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号