首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

This paper applies the methodology developed in Part I to the problem of a separable scatterer near a dielectric (penetrable) or perfectly conducting (impenetrable) interface. For a penetrable interface, the scatterer may be on either side of the interface (exposed or embedded). As in Part I, the scatterer may also be an active element. Thus, our solutions extend the classic treatments of dipoles radiating near a planar dielectric interface. The mutual-interaction method accommodates a uniform half-space as an equivalent scattering plate of zero thickness that preserves amplitudes and phases of the transmitted and reflected waves. Because this scattering function necessarily includes a Dirac delta function, exact analytic solutions are possible for the class of separable scatterers, which include isotropic scatterers and electric or magnetic dipoles. The results can be interpreted within the context of image theory. Integrals similar to those derived by Sommerfeld must be evaluated to calculate the spatial fields for dielectric media; however, for highly conducting media good approximations are readily obtained.  相似文献   

2.
In a recent paper we developed a formalism that fully accommodates the mutual interactions among scatterers separable by parallel planes. The total fields propagating away from these planes are the unknowns of a system of difference equations. Each scatterer is characterized by a scattering function that expresses the scattered wave amplitude as a function of the incident and scattered wavevectors for a unit-amplitude plane wave scattered from the object in isolation. This function can be derived completely from the scattered far field with the help of analytic continuation. For a two-scatterer system the mutual-interaction equations reduce to a single Fredholm integral equation of the second kind. It turns out that analytic solutions are tractable for those scattering functions that are Dirac deltas or a sum of products of separable functions of the incident and scattered wavevectors. Scattering functions for planes and isotropic scatterers, as well as electric and magnetic dipoles all possess this property and are considered. The exact scattering functions agree with results obtained by analytic continuation. This paper consists of two parts. Part I derives analytic solutions for two discrete scatterers (isotropic scatterers. electric dipoles, magnetic dipoles). Part II is devoted to scattering from an object (isotropic or dipole scatterer) near an interface separating two semi-infinite uniforn-media. Because the results in this paper are exact, the effects of near-field interactions can be assessed. The forms of the scattering solutions can be adapted to objects that are both radiating and scattering.  相似文献   

3.
Abstract

In a recent paper we developed a formalism that fully accommodates the mutual interactions among scatterers separable by parallel planes. The total fields propagating away from these planes are the unknowns of a system of difference equations. Each scatterer is characterized by a scattering function that expresses the scattered wave amplitude as a function of the incident and scattered wavevectors for a unit-amplitude plane wave scattered from the object in isolation. This function can be derived completely from the scattered far field with the help of analytic continuation. For a two-scatterer system the mutual-interaction equations reduce to a single Fredholm integral equation of the second kind. It turns out that analytic solutions are tractable for those scattering functions that are Dirac deltas or a sum of products of separable functions of the incident and scattered wavevectors. Scattering functions for planes and isotropic scatterers, as well as electric and magnetic dipoles all possess this property and are considered. The exact scattering functions agree with results obtained by analytic continuation. This paper consists of two parts. Part I derives analytic solutions for two discrete scatterers (isotropic scatterers. electric dipoles, magnetic dipoles). Part II is devoted to scattering from an object (isotropic or dipole scatterer) near an interface separating two semi-infinite uniforn-media. Because the results in this paper are exact, the effects of near-field interactions can be assessed. The forms of the scattering solutions can be adapted to objects that are both radiating and scattering.  相似文献   

4.
A method is developed for solving problems of multiple scattering by an aggregate of bodies in a homogeneous unbounded medium. For this purpose, the problem on the multiple scattering produced by two bodies in the field of a plane wave is first considered under the assumption that the initial unperturbed scattering amplitudes of both scatterers are known. The solution is constructed by considering plane waves multiply rescattered by the scatterers. Integral equations are obtained that allow one to calculate the resulting scattering amplitude of each scatterer and the combined scattering amplitude of the system of two scatterers. It is shown that knowledge of the solution to this problem is sufficient to solve the problem on the scattering field of a system consisting of an arbitrary number of scatterers. Expressions for the scattering amplitude in the case of an arbitrary primary field are presented. The relationship between the integral equations describing the multiple scattering in a homogeneous space and the multiple scattering by a single scatterer located near an interface is demonstrated. Approximate expressions are given for calculating the scattering amplitude in the case of multiple scattering.  相似文献   

5.
Results from the first three terms of the small-slope approximation (SSA) for incoherent electromagnetic scattering from a penetrable randomly rough interface are discussed. Surface roughness is characterized as a Gaussian random process with an isotropic Gaussian correlation function. Sample results illustrate parameter spaces for which each correction term is appreciable. Reduction of the SSA to the physical optics theory is also discussed for both perfectly conducting and dielectric surfaces.  相似文献   

6.
In a series of former papers, we developed the so-called self-consistent Green’s function formalism (SGFF) for acoustic and light scattering on impenetrable or ideal metallic scatterers. With the paper at hand we will extend the application of this formalism to penetrable or dielectric scatterers. The concept of the Green’s function of the third kind is utilized which was introduced first by Tai. It must be slightly generalized to allow the treatment of nonspherical scatterers. The following considerations reveal the conceptual equivalence between the Green’s function of the third kind and Waterman’s T-matrix method. It is another goal of this paper to demonstrate that the conventional boundary and volume integral equations can be also derived within the developed Green’s function formalism.  相似文献   

7.
Recent research has shown that coupling between point scatterers in a disordered medium by longitudinal electromagnetic fields is harmful for Anderson localization of light. However, it has been unclear if this feature is generic or specific for point scatterers. The present work demonstrates that the intensity of longitudinal field outside a spherical dielectric scatterer illuminated by monochromatic light exhibits a complicated, nonmonotonous dependence on the scatterer size. Moreover, the intensity is reduced for a hollow sphere, whereas one can adjust the parameters of a coated sphere to obtain a relatively low longitudinal field together with a strong resonant scattering efficiency. Therefore, random arrangements of structured (hollow or coated) spheres may be promising three‐dimensional disordered materials for reaching Anderson localization of light.  相似文献   

8.
The solution of the inverse problem of electromagnetic scattering by smooth, convex shaped, perfectly conducting, 3-dimensional scatterers is analysed. Certain geometrical as well as physical-optics approximations were used to incorporate the concepts of the “Minkowski problem” of differential geometry into the space-time integral solution of electromagnetic scattering to yield the formal solution for the recovery of the surface profile of the scatterer from the scattered field data. Although various efficient solutions for target identification are available, still information contained in polarization-depolarization characteristics of the scatterer is not yet exploited to its full extent. Therefore the underlying assumption in this investigation was based on the fact that the “depolarization characteristics” of the scattered field do necessarily contain information regarding the surface profile of the scatterer.  相似文献   

9.
龚志双  王秉中  王任 《物理学报》2018,67(8):84101-084101
为快速求解亚波长间距分布的理想导体球阵列近区的时间反演电磁场,提出一种基于等效偶极子模型的解析分析方法.首先,通过分析球面波照射理想导体小球的散射场解析解发现,散射场可以近似等效为电磁偶极子辐射场的叠加.等效偶极子的强度与初始激励源的幅度成正比关系.通过建立不同小球等效偶极子矢量间的耦合方程组可以直接求解得到相应矢量的大小.然后,结合时间反演腔理论得到相应的时间反演并矢格林函数,继而得到小球阵列近区的时间反演场分布.最后,通过与数值仿真软件的计算结果进行对比,验证了方法的正确性及高效性.研究表明,时间反演技术结合近场亚波长间距小散射体加载能够实现超分辨率的场聚焦.  相似文献   

10.
The process of reconstruction of two-dimensional refractive-absorbing scatterers by the modified Novikov algorithm is considered. A generalization of this algorithm to the multifrequency mode is proposed. The scattering data obtained at different frequencies are combined in the process of the solution using the a priori known frequency dependence of the scatterer function, which yields the constraint equations that are absent in the single-frequency version. It is shown that the problem of reconstruction instability observed in strong scatterers in the single-frequency mode can be removed by the multifrequency mode. The quality of the scatterer estimate in the multifrequency mode is significantly higher than that of the estimate obtained by straightforwardly averaging the single-frequency solutions. Interference resistance of the algorithm is sufficiently high to allow its application in practice.  相似文献   

11.
The scattering process of an unpolarized Bessel beam through spherical scatterers is investigated. We derive the analytical solutions of scattered fields of x-and y-polarized Bessel beams using a sphere, after which the dimensionless scattering function for an unpolarized Bessel beam is obtained. The dimensionless scattering function is applicable to spherical scatterers of any size on the beam axis or near it. Through numerical simulations, we demonstrate that extreme points exist in the direction or neighboring direction of the conical angle for spherical scatterers on the beam axis, whereas the existence of extreme points depends on the ratio between the spherical scatterers size and central spot size of the Bessel beam.  相似文献   

12.
提出了一种新的衡量散射体系中散射颗粒消光能力、散射能力和吸收能力的方法并与传统方法进行了比较。在此基础上 ,讨论了散射颗粒折射率和颗粒大小对其散射能力的影响。运用此方法可以为各种散射体系 ,尤其是强散射体系选择恰当的散射颗粒 ,其结果优于用传统方法所得的结果  相似文献   

13.
A computational procedure for analyzing acoustical scattering by multilayer concentric spherical scatterers having an arbitrary mixture of acoustic and elastic materials is proposed. The procedure is then used to analyze the scattering by a spherical scatterer consisting of a solid shell and a solid core encasing an electrorheological (ER) fluid layer, and the tunability in the scattering characteristics afforded by the ER layer is explored numerically. Tunable scatterers with two different ER fluids are analyzed. One, corn starch in peanut oil, shows that a significant increase in scattering cross-section is possible in moderate frequencies. Another, fine poly-methyl methacrylate (PMMA) beads in dodecane, shows only slight change in scattering cross-sections overall. But, when the shell is thin, a noticeable local resonance peak can appear near ka=1, and this resonance can be turned on or off by the external electric field.  相似文献   

14.
We develop a new theory of the optical theorem for scalar fields in nonhomogeneous media which can be bounded or unbounded. It applies to arbitrary lossless backgrounds and quite general probing fields. The derived formulation holds for arbitrary passive scatterers, which can be dissipative, as well as for the more general class of active scatterers which are composed of a (passive) scatterer component and an active, radiating (antenna) component. The generalization of the optical theorem to active scatterers is relevant to many applications such as surveillance of active targets including certain cloaks and invisible scatterers and wireless communications. The derived theoretical framework includes the familiar real power optical theorem describing power extinction due to both dissipation and scattering as well as a novel reactive optical theorem related to the reactive power changes. The developed approach naturally leads to three optical theorem indicators or statistics which can be used to detect changes or targets in unknown complex media. The paper includes numerical simulation results that illustrate the application of the derived optical theorem results to change detection in complex and random media.  相似文献   

15.
We show that the time reversal operator for a planar time reversal mirror (TRM) can have up to four distinct eigenvalues with a small spherical acoustic scatterer. Each eigenstate represents a resonance between the TRM and an induced scattering moment of the sphere. Their amplitude distributions on the TRM are orthogonal superpositions of the radiation patterns from a monopole and up to three orthogonal dipoles. The induced monopole moment is associated with the compressibility contrast between the sphere and the medium, while the dipole moments are associated with density contrast. The number of eigenstates is related to the number of orthogonal orientations of each induced multipole. For hard spheres (glass, metals) the contribution of the monopole moment to the eigenvalues is much greater than that of the dipole moments, leading to a single dominant eigenvalue. The other eigenvalues are much smaller, making it unlikely multiple eigenvalues could have been observed in previous experiments using hard materials. However, for soft materials such as wood, plastic, or air bubbles the eigenvalues are comparable in magnitude and should be observable. The presence of multiple eigenstates breaks the one-to-one correspondence between eigenstates and distinguishable scatterers discussed previously by Prada and Fink [Wave Motion 20, 151-163 (1994)]. However, eigenfunctions from separate scatterers would have different phases for their eigenfunctions, potentially restoring the ability to distinguish separate scatterers. Since relative magnitudes of the eigenvalues for a single scatterer are governed by the ratio of the compressibility contrast to the density contrast, measurement of the eigenvalue spectrum would provide information on the composition of the scatterer.  相似文献   

16.
Exact solution of the electromagnetic wave scattering by N dielectric cylinders is presented by using matrix formulation. To check this present method, two comparisons between exact solutions for a single circular conducting and dielectric cylinder and this model composed of N=25 circular cylinders are made. Numerical results of conducting and dielectric square cylinder has been also checked with well-known result (B.E.M). The scattering patterns and the near field distributions in space are presented for the concave, convex and dielectric circular cylinder with conducting reflector.  相似文献   

17.
The electromagnetic scattering from axisymmetric conducting or nonconducting (dielectric) obstacles, embedded in an axisymmetric dielectric body is treated. A surface integral equation formulation, consisting of coupled Fredholm equations of the first kind for the electric and magnetic fields, is solved by the method of moments. The outer surfaces of the internal obstacles and the embedding dielectrics can be nonconcentric, depart significantly from a spherical shape, but must be rotationally symmetric about a common axis. The embedding dielectric can be multilayered. Computer implementable expressions are given for the scattering cross sections for any desired polarization and for both backscatter (monostatic) and bistatic illumination. Comparisons are made with the extended boundary condition method for homogeneous dielectric bodies and the Mie theory extended for dielectrically clad conducting spheres. The generality of the present formulation is demonstrated for several other cladded scatterer configurations. This research was conducted under the McDonnell Douglas Independent Research and Development Program.  相似文献   

18.
Acoustic properties of two types of soft tissue-like media were measured as a function of compressive strain. Samples were subjected to uniaxial strains up to 40% along the axis of the transducer beam. Measurements were analyzed to test a common assumption made when using pulse-echo waveforms to track motion in soft tissues--that local properties of wave propagation and scattering are invariant under deformation. Violations of this assumption have implications for elasticity imaging procedures and could provide new opportunities for identifying the sources of backscatter in biological media such as breast parenchyma. We measured speeds of sound, attenuation coefficients, and echo spectra in compressed phantoms containing randomly positioned scatterers either stiffer or softer than the surrounding gelatin. Only the echo spectra of gel media with soft scatterers varied significantly during compression. Centroids of the echo spectra were found to be shifted to higher frequencies in proportion to the applied strain up to 10%, and increased monotonically up to 40% at a rate depending on the scatterer size. Centroid measurements were accurately modeled by assuming incoherent scattering from oblate spheroids with an eccentricity that increases with strain. While spectral shifts can be accurately modeled, recovery of lost echo coherence does not seem possible. Consequently, spectral variance during compression may ultimately limit the amount of strain that can be applied between two data fields in heterogeneous media such as lipid-filled tissues. It also appears to partially explain why strain images often produce greater echo decorrelation in tissues than in commonly used graphite-gelatin test phantoms.  相似文献   

19.
The reflection of ultrasound from partially contacting rough surfaces   总被引:1,自引:0,他引:1  
Ultrasound is commonly used to detect and size cracks in a range of engineering components. Modeling techniques are well established for smooth and open cracks. However, real cracks are often rough (relative to the ultrasonic wavelength) and closed due to compressive stress. This paper describes an investigation into the combined effects of crack face roughness and closure on ultrasonic detectability. A contact model has been used to estimate the size and shape of scatterers (voids) at the interface of these rough surfaces when loaded. The response of such interfaces to excitation with a longitudinal ultrasonic pulse over a wide range of frequencies has been investigated. The interaction of ultrasound with this scattering interface is predicted using a finite-element model and good agreement with experiments on rough surfaces is shown. Results are shown for arrays of equi-sized scatterers and a distribution of scatterer sizes. It is shown that the response at high frequencies is dependent on the size, shape, and distribution of the scatterers. It is also shown that the finite-element results depart from the mass-spring model predictions when the product of wave number and scatterer half-width is greater than 0.4.  相似文献   

20.
The Lorentz gas is a model for a cloud of point particles (electrons) in a distribution of scatterers in space. The scatterers are often assumed to be spherical with a fixed diameter d, and the point particles move with constant velocity between the scatterers, and are specularly reflected when hitting a scatterer. There is no interaction between point particles. An interesting question concerns the distribution of free path lengths, i.e. the distance a point particle moves between the scattering events, and how this distribution scales with scatterer diameter, scatterer density and the distribution of the scatterers. It is by now well known that in the so-called Boltzmann–Grad limit, a Poisson distribution of scatterers leads to an exponential distribution of free path lengths, whereas if the scatterer distribution is periodic, the free path length distribution asymptotically behaves as a power law.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号