首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Vesicles formed from synthetic, double-tailed amphiphiles are often used as mimics for biological membranes. However, biological membranes are a complex mixture of various compounds. In the present paper we describe a first attempt to study the importance of additives on vesicular catalysis. The rate-determining deprotonation of 5-nitrobenzisoxazole (Kemp elimination) by hydroxide ion is efficiently catalysed by vesicles formed from dimethyldi-n-octadecylammonium chloride (C(18)C(18)(+)) as a result of (partial) dehydration of the reactants (especially the hydroxide ion) at the vesicular binding sites. Gradual addition of linear alcohols, such as n-decanol (C(10)OH), n-octadecanol (C(18)OH) and batyl alcohol (C(18)GlyOH) leads to a decrease in the observed catalysis. By contrast, gradual addition of oleyl alcohol, n-dodecyl-beta-glucoside (C(12)Glu) and n-dodecyl-beta-maltoside (C(12)Mal) leads to an increase in the observed catalysis. A detailed kinetic analysis, taking into account substrate binding site polarities, counterion binding percentages and binding affinity of the kinetic probe, suggests that the catalytic changes depend strongly on subtle changes in the structure of the additive. Whereas the C(12)Glu-induced effect can be explained by an increase in the vesicular rate constant, the effect of C(12)Mal can only be explained by an increase in the binding constant of the kinetic probe. However, for these pyranoside-containing vesicles others factors, such as a more extensive dehydration of the hydroxide ion, and micelle formation have to be considered. For the linear alcohols, besides a decrease in the counterion binding, changes in the vesicular rate constant and the binding constant should be taken into account. These two parameters change to a different extent for the different alcohols. The kinetic analysis is supported by differential scanning calorimetry (DSC), E(T)(30) absorbance data and Nile Red, Laurdan, ANS and pyrene fluorescence measurements.The overall kinetic results are illustrative for the highly complex mix of factors which determines catalytic effects on reactions occurring in biological cell membranes.  相似文献   

2.
An ion pair amphiphile (IPA), hexadecyltrimethylammonium-dodecylsulfate (HTMA-DS), and a double-chained cationic surfactant, dimethyldimyristylammonium bromide (DTDAB), could form positively charged catanionic vesicles with a potential application in gene delivery. To improve the gene delivery efficiency, the addition of CaCl2 into cationic liposomal systems has been proposed in the literature. In this study, detrimental effect of calcium chloride on the physical stability of the positively charged HTMA-DS/DTDAB catanionic vesicles was demonstrated by the size and zeta potential analyses of the vesicles. It was noted that the reduced electrostatic interaction between the catanionic vesicles could not fully explain the lowered physical stability of the vesicles in the presence of CaCl2. Apparently, the molecular packing/interaction in the vesicular bilayers played an important role in the vesicle physical stability. To modify the molecular packing/interaction in the vesicular bilayers, cholesterol was adopted as an additive to form catanionic vesicles with HTMA-DS/DTDAB. It was found that the physical stability of the catanionic vesicles was significantly improved with the presence of cholesterol in the vesicular bilayers even in the presence of 50 mM CaCl2. An infrared analysis suggested that with the incorporation of cholesterol into HTMA-DS/DTDAB vesicular bilayers, the alkyl chain motion was enhanced, and the molecular packing became less ordered. The cholesterol-induced fluidic bilayer characteristic allowed the vesicular bilayers to be adjusted to a stable status, resulting in improved physical stability of the catanionic vesicles even in the presence of CaCl2 with a high concentration.  相似文献   

3.
An onion-phase (multilamellar vesicular phase or Lalpha-phase) was prepared from salt-free zero-charged cationic and anionic (catanionic) surfactant mixtures of tetradecyltrimethylammonium hydroxide (TTAOH)/lauric acid (LA)/H2O. The H+ and OH- counterions form water (TTAOH + LA --> TTAL + H2O), leaving the solution salt free. The onion-phase solution has novel properties including low conductivity, low osmotic pressure and unscreened electrostatic repulsions between cationic and anionic surfactants because of the absence of salt. The spherical multilamellar vesicles have an average 250 nm radius as measured by freeze-fracture transmission electron microscopy (FF-TEM) and the maximum interlayer distance, i.e., the thickness of the hydrophobic bilayer and the water layer, was calculated to be around 52 nm by small-angle X-ray scattering (SAXS). Extremely hydrophobic C60 fullerene can be solubilized in this salt-free zero-charged aqueous onion-phase. As a typical result, 0.588 mg.mL(-1) (approximately 0.82 mmol.L(-1)) C60 has been successfully solubilized into a 50 mmol.L(-1) catanionic surfactant onion-phase aqueous solution. The weight ratio of fullerene to TTAL is calculated to be around 1:40. Solubilization of C60 in the salt-free catanionic onion-phase solution was investigated by using different sample preparation routes, and a variety of techniques were used to characterize these vesicular systems with or without encapsulated C60. The onion-phase solution changed color from slightly bluish to yellow or brown after C60 was solubilized. 1H and 13C NMR measurements indicated that the C60 molecules are located in the hydrophobic layers, i.e., in the central positions [omega-CH3 and delta-(CH2)x] of the hydrophobic layers of the TTAL onion-phase. Salt-free zero-charged catanionic vesicular aqueous solutions are good candidates for enhancing the solubility of C60 in aqueous solutions and may broaden the functionality of fullerenes to new potential applications in biology, medicine, and materials. Hopefully, our method can also be extended to solubilize functionalized carbon nanotubes in aqueous solutions.  相似文献   

4.
Using molecular dynamics simulation, we performed theoretical calculations on the curvature constant and edge energy of bilayers of salt-free, zero-charged, cationic and anionic (catanionic) surfactant vesicles composed of alkylammonium cations (C(m)(+)) and fatty acid anions (C(n)(-)). Both the minimum size and edge energy of vesicles were calculated to examine the relation between the length of the surfactant molecules and the mechanical properties of the catanionic bilayers. Our simulation results clearly demonstrate that, when the chain lengths of the cationic and anionic surfactants are equal, both the edge energy and the rigidity of the catanionic bilayers increase dramatically, changing from around 0.36 to 2.77 kBT·nm(-1) and around 0.86 to 6.51 kBT·nm(-1), respectively. For the smallest catanionic vesicles, the curvature is not uniform and the surfactant molecules adopt a multicurvature arrangement in the vesicle bilayers. We suspect that the multicurvature bending of bilayers of catanionic vesicles is a common phenomenon in rigid bilayer systems, which could aid understanding of ion transport through bilayer membranes.  相似文献   

5.
Malar EJ 《Inorganic chemistry》2003,42(12):3873-3883
Stability in penta- and decaphospha analogues of lithocene anion and beryllocene is investigated by complete structural optimization at the B3LYP/6-31G level. Natural bond orbital analysis is carried out to examine the bonding between the metal and the ligands. The heterolytic dissociation energies of 667 and 608 kcal/mol predicted by B3LYP/6-311+G//B3LYP/6-31G calculations for CpBeP(5) and (P(5))(2)Be are comparable with the observed value of 635 +/- 15 kcal/mol in ferrocene. The high stability in CpBeP(5) and (P(5))(2)Be shows that these species are isolable under appropriate conditions. Lithocene anion and its phospha analogues possess lower stability toward dissociation into ionic fragments. A novel observation of the present study is that CpBeP(5) and (P(5))(2)Be have lowest energies when the two planar ligands are arranged perpendicular to each other such that one of the ligands, cyclo-P(5), is eta(1)-coordinated while the second ligand is eta(5)-coordinated to Be. The resulting structure having C(s)() point group (denoted as C(s)()(p)) is predicted to be 22 and 28 kcal/mol lower than the staggered sandwich geometry in CpBeP(5) and (P(5))(2)Be, respectively, at the B3LYP/6-311+G//B3LYP/6-31G level. In the analogous lithocene anions [CpLiP(5)](-) and [(P(5))(2)Li](-) also the C(s)()(p) structures are found to be the lowest energy structures, though their relative stabilities are small. We also characterized the geometry with both ligands eta(1)-coordinated to the metal in a linear arrangement having the D(2)(h)() point group in the decaphospha analogues [(P(5))(2)Li](-) and (P(5))(2)Be. This structure is found to be higher in energy than the C(s)()(p) structure. The D(2)(h)() structure could not be located as a potential minimum in the biscyclopentadienyl complexes and their pentaphospha analogues. Both the C(s)()(p) and D(2)(h)() structures are characterized for the first time in metallocenes. The D(2)(h)() structure seems to be a unique feature in the decaphospha metallocenes under consideration. Covalent bond formation between beryllium and phosphorus atom P(1) of eta(1)-(cyclo-P(5)) is more pronounced (bond orders 0.43-0.49) than that between Be and C(1) of eta(1)-Cp (bond orders 0.24-0.27). Though both eta(1)-coordinated cyclo-P(5) and Cp exhibit C(2)(v)() point groups, bond alternation is less pronounced in the former. The Wiberg P-P bond orders in the eta(1)-(cyclo-P(5)) of CpBeP(5) and (P(5))(2)Be having C(s)()(p) structures are in the range 1.29-1.47. These ring bond orders indicate that the P(5) ring retains aromaticity to a large extent in the eta(1)-mode of bonding with Be. Second-order perturbational energy analysis of the Fock matrix in the natural bond orbital basis reveals that there is a significant stabilizing interaction of approximately 123 kcal/mol between the lone pair orbital of P(1) and the 2s orbital of Be in the C(s)()(p) structures.  相似文献   

6.
The physical stability of catanionic vesicles is important for the development of novel drug or DNA carriers. For investigating the mechanism by which catanionic vesicles are stabilized, molecular dynamics (MD) simulation is an attractive approach that provides microscopic structural information on the vesicular bilayer. In this study, MD simulation was applied to investigate the bilayer properties of catanionic vesicles composed of an ion pair amphiphile (IPA), hexadecyltrimethylammonium-dodecylsulfate (HTMA-DS), and a double-tailed cationic surfactant, ditetradecyldimethylammonium chloride (DTDAC). Structural information regarding membrane elasticity and the organization and conformation of surfactant molecules was obtained based on the resulting trajectory. Simulation results showed that a proper amount of DTDAC could be used to complement the asymmetric structure between HTMA and DS, resulting in an ordered hydrocarbon chain packing within the rigid membrane observed in the mixed HTMA-DS/DTDAC system. The coexistence of gel and fluid phases was also observed in the presence of excess DTDAC. MD simulation results agreed well with results obtained from experimental studies examining mixed HTMA-DS/DTDAB vesicles.  相似文献   

7.
This work provides an in-depth look at a range of physicochemical aspects of (i) single wall carbon nanotubes (SWNT), (ii) pyrene derivatives (pyrene(+)), (iii) porphyrin derivatives (ZnP(8)()(-)() and H(2)()P(8)()(-)()), (iv) poly(sodium 4-styrenesulfonate), and (v) their combinations. Implicit in their supramolecular combinations is the hierarchical integration of SWNT (as electron acceptors), together with ZnP(8)()(-)() or H(2)()P(8)()(-)() (as electron donors), in an aqueous environment mediated through pyrene(+). This supramolecular approach yields novel electron donor-acceptor nanohybrids (SWNT/pyrene(+)/ZnP(8)()(-)() or SWNT/pyrene(+)/H(2)()P(8)()(-)()). In particular, we report on electrochemical and photophysical investigations that as a whole suggest sizeable and appreciable interactions between the individual components. The key step to form SWNT/pyrene(+)()/ZnP(8)()(-)() or SWNT/pyrene(+)()/H(2)()P(8)()(-)() hybrids is pi-pi interactions between SWNT and pyrene(+), for which we have developed for the first time a sensitive marker. The marker is the monomeric pyrene fluorescence, which although quenched is (i) only present in SWNT/pyrene(+) and (ii) completely lacking in just pyrene(+). Electrostatic interactions help to immobilize ZnP(8)()(-)() or H(2)()P(8)()(-)() onto SWNT/pyrene(+) to yield the final electron donor-acceptor nanohybrids. A series of photochemical experiments confirm that long-lived radical ion pairs are formed as a product of a rapid excited-state deactivation of ZnP(8)()(-)() or H(2)()P(8)()(-)(). This formation is fully rationalized on the basis of the properties of the individual moieties. Additional modeling shows that the data are likely to be relevant to the SWNTs present in the sample, which possess wider diameters.  相似文献   

8.
An octanuclear M8L12 coordination cage catalyses the Kemp elimination reaction of 5-nitro-1,2-benzisoxazole (NBI) with hydroxide to give 2-cyano-4-nitrophenolate (CNP) as the product. In contrast to the previously-reported very efficient catalysis of the Kemp elimination reaction of unsubstituted benzisoxazole, which involves the substrate binding inside the cage cavity, the catalysed reaction of NBI with hydroxide is slower and occurs at the external surface of the cage, even though NBI can bind inside the cage cavity. The rate of the catalysed reaction is sensitive to the presence of added anions, which bind to the 16+ cage surface, displacing the hydroxide ions from around the cage which are essential reaction partners in the Kemp elimination. Thus we can observe different binding affinities of anions to the surface of the cationic cage in aqueous solution by the extent to which they displace hydroxide and thereby inhibit the catalysed Kemp elimination and slow down the appearance of CNP. For anions with a −1 charge the observed affinity order for binding to the cage surface is consistent with their ease of desolvation and their ordering in the Hofmeister series. With anions that are significantly basic (fluoride, hydrogen carbonate, carboxylates) the accumulation of the anion around the cage surface accelerates the Kemp elimination compared to the background reaction with hydroxide, which we ascribe to the ability of these anions to participate directly in the Kemp elimination. This work provides valuable mechanistic insights into the role of the cage in co-locating the substrate and the anionic reaction partners in a cage-catalysed reaction.

A cage-catalysed Kemp elimination reaction of 5-nitro-1,2-benzisoxazole (NBI) with hydroxide to give 2-cyano-4-nitrophenolate (CNP) as the product is sensitive to binding of different types of anion to the cage surface.  相似文献   

9.
Single-ligand complexes of first series transition metals with ammonia, water, hydroxide, and fluoride, many known in the gas phase, have been studied in calculations covering the 20 mono- and divalent cations and some very unusual binding patterns have been found. Binding energies and binding geometries were calculated at MP2 level, using a basis with a (6d/4d) contraction in the metal d space and 6-311+G sets for the ligands. The results were used to distinguish the effect of steadily increasing nuclear charge across the series from the varying effects of d shell occupation. Even with only one ligand, the M(2+) adducts displayed the familiar ligand field effects, d shell repulsion in the expected d(delta) < d(pi) < d(sigma) order being superimposed on a regular progression to stronger binding and shorter bonds; that progression was disturbed only at the d(5) and d(10) positions, when the d(sigma) orbital was occupied. Monovalent metal adducts behaved in strikingly different fashion, with irregular changes across early and late series metals in both bond length and bond strength. The irregularities are only partly attributable to the presence of both d(n)()(-)(1)s and d(n)() ground states in the series. The other part of the explanation is the binding of anionic ligands inside the radial maximum of the 4s orbital. At these distances the normal binding preference shown by H(2)O and NH(3) for d(n)() over sd(n)()(-)(1) cations is reversed. In contrast to steeply rising binding energies across the divalent metal ion adducts, the trend lines for the monovalent series are flat, the increments in nuclear charge being insufficent to offset the extra repulsion of electrons added to the d shell.  相似文献   

10.
[reaction: see text] We have analyzed the different catalytic effects of surfactant aggregates upon the rate-determining hydroxide ion induced deprotonation reaction of 1. Vesicles are more effective catalysts than micelles, most likely providing a more apolar microenvironment at the substrate binding sites. We suggest that this leads to a catalytic reaction involving less strongly hydrated hydroxide ions. In the case of DODAB and DODAC vesicles, binding of cholesterol to the bilayer further increases the catalytic efficiency.  相似文献   

11.
The reaction between equimolar amounts of Pt(3)(mu-PBu(t)()(2))(3)(H)(CO)(2), Pt(3)()H, and CF(3)SO(3)H under CO atmosphere affords the triangular species [Pt(3)(mu-PBu(t)()(2))(3)(CO)(3)]X, [Pt(3)()(CO)(3)()(+)()]X (X = CF(3)SO(3)(-)), characterized by X-ray crystallography, or in an excess of acid, [Pt(6)(mu-PBu(t)()(2))(4)(CO)(6)]X(2), [Pt(6)()(2+)()]X(2)(). Structural determination shows the latter to be a rare hexanuclear cluster with a Pt(4) tetrahedral core formed by joining the unbridged sides of two orthogonal Pt(3) triangles. The dication Pt(6)()(2+)() features also extensive redox properties as it undergoes two reversible one-electron reductions to the congeners [Pt(6)(mu-PBu(t)()(2))(4)(CO)(6)](+) (Pt(6)()(+)(), E(1/2) = -0.27 V) and Pt(6)(mu-PBu(t)()(2))(4)(CO)(6) (Pt(6)(), E(1/2) = -0.54 V) and a further quasi-reversible two-electron reduction to the unstable dianion Pt(6)()(2)()(-)() (E(1/2) = -1.72 V). The stable radical (Pt(6)()(+)()) and diamagnetic (Pt(6)()) species are also formed via chemical methods by using 1 or 2 equiv of Cp(2)Co, respectively; further reduction of Pt(6)()(2+)() causes fast decomposition. The chloride derivatives [Pt(6)(mu-PBu(t)()(2))(4)(CO)(5)Cl]X, (Pt(6)()Cl(+)())X, and Pt(6)(mu-PBu(t)()(2))(4)(CO)(4)Cl(2), Pt(6)()Cl(2)(), observed as side-products in some electrochemical experiments, were prepared independently. The reaction leading to Pt(3)()(CO)(3)()(+)() has been analyzed with DFT methods, and identification of key intermediates allows outlining the reaction mechanism. Moreover, calculations for the whole series Pt(6)()(2+)() --> Pt(6)()(2)()(-)()( )()afford the otherwise unknown structures of the reduced derivatives. While the primary geometry is maintained by increasing electron population, the system undergoes progressive and concerted out-of-plane rotation of the four phosphido bridges (from D(2)(d)() to D(2) symmetry). The bonding at the central Pt(4) tetrahedron of the hexanuclear clusters (an example of 4c-2e(-) inorganic tetrahedral aromaticity in Pt(6)()(2+)()) is explained in simple MO terms.  相似文献   

12.
The gelation of two spontaneously formed charged catanionic vesicles by four water soluble polymers was systematically studied by tube inversion method and rheology. Eight phase maps were successfully documented for the catanionic vesicle–polymer mixtures. The experimental results, as represented by the relaxation time and the storage modulus at 1 Hz, revealed that the catanionic vesicle–polymer interactions at play were of electrostatic and hydrophobic origin. Firstly, no association between charged catanionic vesicles and the polymer without charge/hydrophobic modification was observed due to lack of both electrostatic and hydrophobic effects. Secondly, hydrophobic interactions accounted for the association between the hydrophobically modified polymer without charge and charged catanionic vesicles with hydrophobic grafts of the polymer inserting in the catanionic vesicle bilayer. Thirdly, the positively charged polymer without hydrophobic modification could interact with negatively charged catanionic vesicles through electrostatic force on one hand but could not interact with positively charged catanionic vesicles on the other hand. Finally, the positively charged polymer with hydrophobic modification could interact both electrostatically and hydrophobically with negatively charged catanionic vesicles, resulting in the formation of strong gels. The hydrophobic interaction might even overcome the unfavorable electrostatic interaction between the positively charged vesicles and the polymer with positive charge/hydrophobic modification.  相似文献   

13.
Berg KE  Blixt J  Glaser J 《Inorganic chemistry》1996,35(24):7074-7081
The existence of mixed complexes of the general formula Tl(CN)(m)()Cl(n)()(3)(-)(m)()(-)(n)() (m + n 相似文献   

14.
摘要 合成了含有识别基团苯硼酸、喹啉发色团的新型双亲化合物,N-硼苄基-8-16烷基溴化喹啉(N-(boronobenzyl)-8-hexadecyloxyquinolinium bromide (BHQB)).该化合物在可选择性溶剂中自组织成囊泡,囊泡的相变温度为52.4℃;研究了BHQB囊泡的荧光性质,结果表明:当向囊泡体系加入糖时,喹啉在425nm 峰逐渐增强而508nm峰急剧减弱,变化趋势为葡萄糖>果糖.实验结果表明,BHQB囊泡可以作为可植入、连续检测血糖浓度的荧光囊泡传感器,可望用于临床实际应用.  相似文献   

15.
The mechanism of hydroarylation of olefins by a homogeneous Ph-Ir(acac)(2)(L) catalyst is elucidated by first principles quantum mechanical methods (DFT), with particular emphasis on activation of the catalyst, catalytic cycle, and interpretation of experimental observations. On the basis of this mechanism, we suggest new catalysts expected to have improved activity. Initiation of the catalyst from the inert trans-form into the active cis-form occurs through a dissociative pathway with a calculated DeltaH(0 K)() = 35.1 kcal/mol and DeltaG(298 K)() = 26.1 kcal/mol. The catalytic cycle features two key steps, 1,2-olefin insertion and C-H activation via a novel mechanism, oxidative hydrogen migration. The olefin insertion is found to be rate determining, with a calculated DeltaH(0 K)() = 27.0 kcal/mol and DeltaG(298 K)() = 29.3 kcal/mol. The activation energy increases with increased electron density on the coordinating olefin, as well as increased electron-donating character in the ligand system. The regioselectivity is shown to depend on the electronic and steric characteristics of the olefin, with steric bulk and electron withdrawing character favoring linear product formation. Activation of the C-H bond occurs in a concerted fashion through a novel transition structure best described as an oxidative hydrogen migration. The character of the transition structure is seven coordinate Ir(V), with a full bond formed between the migrating hydrogen and iridium. Several experimental observations are investigated and explained: (a) The nature of L influences the rate of the reaction through a ground-state effect. (b) The lack of beta-hydride products is due to kinetic factors, although beta-hydride elimination is calculated to be facile, all further reactions are kinetically inaccessible. (c) Inhibition by excess olefin is caused by competitive binding of olefin and aryl starting materials during the catalytic cycle in a statistical fashion. On the basis of this insertion-oxidative hydrogen transfer mechanism we suggest that electron-withdrawing substituents on the acac ligands, such as trifluoromethyl groups, are good modifications for catalysts with higher activity.  相似文献   

16.
Photochemical switching has been studied of double-tailed phosphate amphiphiles containing azobenzene units in both tails in aqueous vesicular dispersions and in mixed vesicular systems with 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). Since the ease of switching depends on the strength of the bilayer packing, particular emphasis has been placed on the occurrence of H-aggregation in the hydrophobic core of the vesicles. UV-vis spectrometry was employed to monitor H-aggregation and showed how this process depends on the ionic strength and on the mode of preparation of the vesicles. Two types of H-aggregates were observed in mixed DOPC vesicles with 5 mol % of azobenzene phosphate: one with lambda(max) at around 300 nm and one with lambda(max) at 305-320 nm. Those with lambda(max) at 300 nm could not be trans-cis photoisomerized, whereas those with lambda(max) at 305-320 nm are more loosely packed and can be photochemically switched. The permeability of the vesicular bilayers, as probed with leakage experiments using calcein as a fluorescent probe, was examined as another measure for the strength of bilayer packing. Leakage occurred only for DOPC vesicles containing more than 20 mol % of azobenzenephosphate, irradiated with UV light to induce trans-cis photoisomerization. We contend that detailed information on bilayer packing will be of crucial importance for fine-tuning the lateral pressure in vesicular membranes with the ultimate aim to steer the opening and closing of mechanosensitive protein channels of large conductance.  相似文献   

17.
The kinetics of thermo-induced micelle-to-vesicle transitions in a catanionic surfactant system consisting of sodium dodecyl sulfate (SDS) and dodecyltriethylammonium bromide (DEAB) were investigated by the stopped-flow temperature jump technique, which can achieve T-jumps within ~2-3 ms. SDS/DEAB aqueous mixtures ([SDS]/[DEAB] = 2/1, 10 mM) undergo microstructural transitions from cylindrical micelles to vesicles when heated above 33 °C. Upon T-jumps from 20 °C to final temperatures in the range of 25-31 °C, relaxation processes associated with negative amplitudes can be ascribed to the dilution-induced structural rearrangement of cylindrical micelles and to the dissolution of non-equilibrium mixed aggregates. In the final temperature range of 33-43 °C the obtained dynamic traces can be fitted by single exponential functions, revealing one relaxation time (τ) in the range of 82-440 s, which decreases with increasing temperature. This may be ascribed to the transformation of floppy bilayer structures into precursor vesicles followed by further growth into final equilibrium vesicles via the exchange and insertion/expulsion of surfactant monomers. In the final temperature range of 45-55 °C, vesicles are predominant. Here T-jump relaxations revealed a distinctly different kinetic behavior. All dynamic traces can only be fitted with double exponential functions, yielding two relaxation times (τ(1) and τ(2)), exhibiting a considerable decrease with increasing final temperatures. The fast process (τ(1)~ 5.2-28.5 s) should be assigned to the formation of non-equilibrium precursor vesicles, and the slow process (τ(2)~ 188-694 s) should be ascribed to their further growth into final equilibrium vesicles via the fusion/fission of precursor vesicles. In contrast, the reverse vesicle-to-micelle transition process induced by a negative T-jump from elevated temperatures to 20 °C occurs quite fast and almost completes within the stopped-flow dead time (~2-3 ms).  相似文献   

18.
Atomization energies at 0 K and heats of formation at 0 and 298 K are predicted for XeF(+), XeF(-), XeF(2), XeF(4), XeF(5)(-), and XeF(6) from coupled cluster theory (CCSD(T)) calculations with new correlation-consistent basis sets for Xe. To achieve near chemical accuracy (+/-1 kcal/mol), up to four corrections were added to the complete basis set binding energies based on frozen core coupled cluster theory energies: a correction for core-valence effects, a correction for scalar relativistic effects, a correction for first-order atomic spin-orbit effects, and in some cases, a second-order spin-orbit correction. Vibrational zero-point energies were computed at the coupled cluster level of theory. The structure of XeF(6) is difficult to obtain with the C(3)(v)() and O(h)() structures having essentially the same energy. The O(h)() structure is only 0.19 kcal/mol below the C(3)(v)() one at the CCSD(T)/CBS level using an approximate geometry for the C(3)(v)() structure. With an optimized C(3)(v)() geometry, the C(3)(v)() structure would probably become slightly lower in energy than the O(h)() one. The calculated heats of formation for the neutral XeF(n)() fluorides are less negative than the experimental values from the equilibrium measurements by 2.0, 7.7, and 12.2 kcal/mol for n = 2, 4, and 6, respectively. For the experimental values, derived from the photoionization measurements, this discrepancy becomes even larger, suggesting a need for a redetermination of the experimental values. Evidence is presented for the fluxionality of XeF(6) caused by the presence of a sterically active, free valence electron pair on Xe.  相似文献   

19.
A new sugar-derived tricatenar catanionic surfactant (TriCat) was developed to obtain stable vesicles that could be exploited for drug encapsulation. The presence of the sugar moiety led to the formation of highly hydrophilic stoichiometric catanionic surfactant systems. The three hydrophobic chains permitted vesicles to form spontaneously. The self-assembly properties (morphology, size, and stability) of TriCat were examined in water and in buffer solution. Encapsulation studies of a hydrophilic probe, arbutin, commonly used in cosmetics for its whitening properties, were performed to check the impermeability of the vesicle bilayer. The enhancement of hydrophobic forces by the three chains of TriCat prevented surfactant equilibrium between the bilayer and the solution and enabled the probe to be retained in the aqueous cavity of the vesicles for at least 30 h. Thus, the present study suggests that this tricatenar catanionic surfactant could be a promising delivery system for hydrophilic drugs.  相似文献   

20.
The reaction of two equiv of the monomeric ether-phosphine O,P ligand (MeO)(3)Si(CH(2))(3)(Ph)PCH(2)-Do [1a(T(0)()), 1b(T(0)())] {Do = CH(2)OCH(3) [1a(T(0)())], CHCH(2)CH(2)CH(2)O [1b(T(0)())]} with PdCl(2)(COD) yields the monomeric palladium(II) complexes Cl(2)Pd(P approximately O)(2) [2a(T(0)())(2)(), 2b(T(0)())(2)()]. The compounds 2a(T(0)())(2)() and 2b(T(0)())(2)() are sol-gel processed with variable amounts (y) of Si(OEt)(4) (Q(0)()) to give the polysiloxane-bound complexes 2a(T(n)())(2)()(Q(k)())(y)(), 2b(T(n)())(2)()(Q(k)())(y)() (Table 1) {P approximately O = eta(1)-P-coordinated ether-phosphine ligand; for T(n)() and Q(k)(), y = number of condensed T type (three oxygen neighbors), Q type (four oxygen neighbors) silicon atoms; n and k = number of Si-O-Si bonds; n = 0-3; k = 0-4; 2a(T(n)())(2)()(Q(k)())(y)(), 2b(T(n)())(2)()(Q(k)())(y)() = {[M]-SiO(n)()(/2)(OX)(3)(-)(n)()}(2)[SiO(k)()(/2)(OX)(4)(-)(k)()](y)(), [M] = (Cl(2)Pd)(1/2)(Ph)P(CH(2)Do)(CH(2))(3)-, X = H, Me, Et}. The complexes 2b(T(n)())(2)()(Q(k)())(y)() (y = 4, 12, 36) show high activity and selectivity in the hydrogenation of 1-hexyne and tolan. The dicationic complexes [Pd(P&arcraise;O)(2)][SbF(6)](2) [3a(T(0)())(2)(), 3b(T(0)())(2)()] are formed by reacting Cl(2)Pd(P approximately O)(2) with 2 equiv of a silver salt {P&arcraise;O = eta(2)-O&arcraise;P-coordinated ether-phosphine ligand; 3a(T(0)())(2)(), 3b(T(0)())(2)() = [M]-SiOMe(3); [M] = {[Pd(2+)](1/)(2)P(Ph)(CH(2)CH(2)OCH(3))(CH(2))(3)-}{SbF(6)} (a), {[Pd(2+)](1/)(2)P(Ph)(CH(2)CHCH(2)CH(2)CH(2)O)(CH(2))(3)-}{SbF(6)} (b)}. Their polysiloxane-bound congeners 3a(T(n)())(2)(), 3b(T(n)())(2)() {[M]-SiO(n)()(/2)(OX)(3)(-)(n)} are obtained if a volatile, reversible bound ligand like acetonitrile is employed during the sol-gel process. The bis(chelate)palladium(II) complexes 3a(T(n)())(2)(), 3b(T(n)())(2)() are catalytic active in the solvent-free CO-ethene copolymerization, producing polyketones with chain lengths comparable to those obtained with chelating diphosphine ligands. The polysiloxane-bound palladium(0) complexes 5a(T(n)())(2)()(Q(k)())(4)(), 5b(T(n)())(2)()(Q(k)())(4)() {[M]-SiO(n)()(/)(2)(OX)(3)(-)(n)}(2)[SiO(k)()(/2)(OX)(4)(-)(k)](4), [M] = [(dba)Pd](1/)(2)P(Ph)(CH(2)Do)(CH(2))(3)-} undergo an oxidative addition reaction with iodobenzene in an interphase with formation of the complexes PhPd(I)(P approximately O)(2).4SiO(2) [6a(T(n)())(2)()(Q(k)())(4)(), 6b(T(n)())(2)()(Q(k)())(4)()] {[M]-SiO(n)()(/)(2)(OX)(3)(-)(n)](2)[SiO(k)()(/2)(OX)(4)(-)(k)](4), [M] = [PhPd(I)](1/2)P(Ph)(CH(2)Do)(CH(2))(3)-}, which insert carbon monoxide into the palladium-aryl bond even in the solid state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号