共查询到20条相似文献,搜索用时 15 毫秒
1.
Pore network models (PNMs) offer a computationally efficient way to analyse transport in porous media. Their effectiveness depends on how well they represent the topology and geometry of real pore systems, for example as imaged by X-ray CT. The performance of two popular algorithms, maximum ball and watershed, is evaluated for three porous systems: an idealised medium with known pore throat properties and two rocks with different morphogenesis—carbonate and sandstone. It is demonstrated that while the extracted PNM simulates simple flow (permeability) with acceptable accuracy, their topological and geometric properties are significantly different. This suggests that such PNM may not serve more complex studies, such as reactive/convective transport of contaminants or bacteria, and further research is necessary to improve the interpretation of real pore spaces with networks. Linear topology–geometry relations are derived and presented to stimulate development of more realistic PNM. 相似文献
2.
Pore network analysis is used to investigate the effects of microscopic parameters of the pore structure such as pore geometry, pore-size distribution, pore space topology and fractal roughness porosity on resistivity index curves of strongly water-wet porous media. The pore structure is represented by a three-dimensional network of lamellar capillary tubes with fractal roughness features along their pore-walls. Oil-water drainage (conventional porous plate method) is simulated with a bond percolation-and-fractal roughness model without trapping of wetting fluid. The resistivity index, saturation exponent and capillary pressure are expressed as approximate functions of the pore network parameters by adopting some simplifying assumptions and using effective medium approximation, universal scaling laws of percolation theory and fractal geometry. Some new phenomenological models of resistivity index curves of porous media are derived. Finally, the eventual changes of resistivity index caused by the permanent entrapment of wetting fluid in the pore network are also studied.Resistivity index and saturation exponent are decreasing functions of the degree of correlation between pore volume and pore size as well as the width of the pore size distribution, whereas they are independent on the mean pore size. At low water saturations, the saturation exponent decreases or increases for pore systems of low or high fractal roughness porosity respectively, and obtains finite values only when the wetting fluid is not trapped in the pore network. The dependence of saturation exponent on water saturation weakens for strong correlation between pore volume and pore size, high network connectivity, medium pore-wall roughness porosity and medium width of the pore size distribution. The resistivity index can be described succesfully by generalized 3-parameter power functions of water saturation where the parameter values are related closely with the geometrical, topological and fractal properties of the pore structure. 相似文献
4.
Gas production from underground storage reservoirs is sometimes associated with solid particles eroded from the rock matrix.
This phenomenon often called sand production can cause damage to the storage equipments, leading the operator to choke the wells and prevent them from producing at full
capacity. Colloid release is often associated as a precursor of larger solid production. Indeed, in sandstone storage sites,
clay release induced by the presence of condensed water associated with the gas production in the near-wellbore region can
be a forecast of intergranular cement erosion. The objective of this work is twofold: firstly to experimentally investigate
colloidal particle detachment through ionic strength reduction (absence of salinity of the condensed water) in porous media
and secondly to determine its evolution with time and to model it. Laboratory experiments with model systems are developed
to reproduce the particle generation and their transport in porous media. The model porous medium is a packed column of two
powders: silicon carbide particles of 50 μm and silica particles of 0.5 μm (3% by weight) initially mixed together. Brine
flows at different concentrations are imposed through the porous sample and, at very low salt concentration, colloid silica
particles are massively released from the medium. Experimental evolutions of the particle concentration with time are compared
to solutions of the advection–dispersion equation including first-order source terms for colloid release. The dispersion coefficients
of the porous medium have been determined with tracer tests. The experimental results exhibit a different behaviour at short-
and long-time intervals and a model has been built to predict the colloid production evolution with the introduction of two
different time scales for the eroded rate. The model can be used in a core test to evaluate the amount of detachable fines
and the rate of erosion. 相似文献
5.
We present a pore network model combined with a random walk algorithm allowing the simulation of molecular displacement distributions in porous media as measured by NMR. A particular feature of this technique is the ability to probe the time evolution of these distributions. The objective is to predict the displacement behaviour for time intervals larger than the experimental observation time and explore the asymptotic dispersion regime at long times. Starting from 3D micro-CT images, we computed the variance of displacement distributions of water molecules in a Fontainebleau sand and found very good agreement of the time evolution of the variance with experimental data, without fitting parameter. The model confirms a weak superdispersion in the asymptotic regime. In addition, we conclude that, since pore network models do not take into account small scale features of the porous medium (e.g., surface roughness and grain shape), the origin of the observed superdispersion is mainly due to the topology and geometry of the porous medium. 相似文献
6.
Considering the separable phenomena of imbibition in complex fine porous media as a function of timescale, it is noted that there are two discrete imbibition rate regimes when expressed in the Lucas–Washburn (L–W) equation. Commonly, to account for this deviation from the single equivalent hydraulic capillary, experimentalists propose an effective contact angle change. In this work, we consider rather the general term of the Wilhelmy wetting force regarding the wetting line length, and apply a proposed increase in the liquid–solid contact line and wetting force provided by the introduction of surface meso/nanoscale structure to the pore wall roughness. An experimental surface pore wall feature size regarding the rugosity area is determined by means of capillary condensation during nitrogen gas sorption in a ground calcium carbonate tablet compact. On this nano size scale, a fractal structure of pore wall is proposed to characterize for the internal rugosity of the porous medium. Comparative models based on the Lucas–Washburn and Bosanquet inertial absorption equations, respectively, for the short timescale imbibition are constructed by applying the extended wetting line length and wetting force to the equivalent hydraulic capillary observed at the long timescale imbibition. The results comparing the models adopting the fractal structure with experimental imbibition rate suggest that the L–W equation at the short timescale cannot match experiment, but that the inertial plug flow in the Bosanquet equation matches the experimental results very well. If the fractal structure can be supported in nature, then this stresses the role of the inertial term in the initial stage of imbibition. Relaxation to a smooth-walled capillary then takes place over the longer timescale as the surface rugosity wetting is overwhelmed by the pore condensation and film flow of the liquid ahead of the bulk wetting front, and thus to a smooth walled capillary undergoing permeation viscosity-controlled flow. 相似文献
7.
Transport in Porous Media - Imbibition is a commonly encountered multiphase problem in various fields, and exact prediction of imbibition processes is a key issue for better understanding capillary... 相似文献
9.
This paper describes a dynamic model for the simulation of foamy oil flow in porous media. The model includes expressions for the rate processes of nucleation, bubble growth and disengagement of dispersed gas bubbles from the oil. The model is used to simulate experimental results pertaining to primary depletion tests conducted in a sand pack. Using the model to interpret experimental results indicated that, although the lifetimes of supersaturation and dispersed gas bubbles may be short, supersaturated conditions are likely to exist, and dispersed gas bubbles are likely to be present during the entire production period, as long as the pressure continues to decline at a high rate. The model developed in this paper gave better agreement with experimental data than other proposed models. The effect of foamy oil flow increases as the rate of pressure decline increases. 相似文献
10.
The flow of non-Newtonian fluids through two-dimensional porous media is analyzed at the pore scale using the smoothed particle
hydrodynamics (SPH) method. A fully explicit projection method is used to simulate incompressible flow. This study focuses
on a shear-thinning power-law model ( n < 1), though the method is sufficiently general to include other stress-shear rate relationships. The capabilities of the
proposed method are demonstrated by analyzing a Poiseuille problem at low Reynolds numbers. Two test cases are also solved
to evaluate validity of Darcy’s law for power-law fluids and to investigate the effect of anisotropy at the pore scale. Results
show that the proposed algorithm can accurately simulate non-Newtonian fluid flows in porous media. 相似文献
11.
The transition from laminar to turbulent flow in porous media is studied with a new method. To mimic interconnected pores, a simplified geometry consisting of a pipe with a relatively large diameter that is split into two parallel pipes with different diameters is studied. This is a pore-doublet setup and the pressure drops over the parallel pipes are recorded by pressure transducers for different flow rates. Results show that the flow in the parallel pipes is redistributed when turbulent slugs pass through one of them. The presence of the slugs is revealed by positive skewness in the pressure signals as well as an increase of the standard deviation of the pressure drops and correlation between the pressure drops of the pipes. A frequency analysis of the pressure drops show that lower band frequency pressure variations in one pipe are communicated to the other pipe while higher band frequencies are filtered out. 相似文献
12.
In this paper, a microscopic visualization experiment is conducted to explore the heterogeneous flow pattern of micro polymer particles in micron pore. A capillary bundle network model for micro polymer particles in porous media is established. The migration and retention mechanism of polymer particles can be clearly observed in the experiment and simulated with this numerical model. The result demonstrates that the block of large particles is one of the main factors by which micro polymer particles increase the flow resistance. The simulation results are consistent with the experimental results. 相似文献
13.
Understanding the role of shuttle vibrations in pore fluid distribution is an essential task in the exploration of plant growth
in root modules aboard space flights. Results from experimental investigations are reported in this paper on the distribution
of immiscible fluid phases in glass beads under vibrations. Hexadecane, a petroleum compound immiscible with and lighter than
water, was used in the experiments. The higher freezing point of Hexadecane (18 °C) allowed the solidification of the entrapped
blobs in the presence of water in porous media, so that their size distribution can be obtained. van Genuchten function, commonly
used to express moisture retention curves, is found to be an adequate fit for blob size distribution at residual saturation.
The effect of vibrations on the fate (mobilization, stranding, or breakup) of a solitary ganglion in porous media was studied
using a network model. A mobility criterion considering viscous, gravity, and capillary forces was developed to determine
the fate of a solitary ganglion in a porous medium. It is concluded that the effect of vibrations is to increase the likelihood
of breakup and mobilization of blobs entrapped in porous media at residual saturation. The pore fluid distributions after
vibrations are less uniform than those before vibrations. 相似文献
14.
In three-phase flow, the macroscopic constitutive relations of capillary pressure and relative permeability as functions of saturation depend in a complex manner on the underlying pore occupancies. These three-phase pore occupancies depend in turn on the interfacial tensions, the pore sizes and the degree of wettability of the pores, as characterised by the cosines of the oil–water contact angles. In this work, a quasi-probabilistic approach is developed to determine three-phase pore occupancies in media where the degree of wettability varies from pore to pore. Given a set of fluid and rock properties, a simple but novel graphical representation is given of the sizes and oil–water contact angles underlying three-phase occupancies for every allowed combination of capillary pressures. The actual phase occupancies are then computed using the contact angle probability density function. Since a completely accessible porous medium is studied, saturations, capillary pressures, and relative permeabilities are uniquely related to the pore occupancies. In empirical models of three-phase relative permeability it is of central importance whether a phase relative permeability depends only on its own saturation and how this relates to the corresponding two-phase relative permeability (if at all). The new graphical representation of pore sizes and wettabilities clearly distinguishes all three-phase pore occupancies with respect to these saturation-dependencies. Different types of saturation-dependencies may occur, which are shown to appear in ternary saturation diagrams of iso-relative permeability curves as well, thus guiding empirical approaches. However, for many saturation combinations three-phase and two-phase relative permeabilities can not be linked. In view of the latter, the present model has been used to demonstrate an approach for three-phase flow modelling on the basis of the underlying pore-scale processes, in which three-phase relative permeabilities are computed only along the actual flow paths. This process-based approach is used to predict an efficient strategy for oil recovery by simultaneous water-alternating-gas (SWAG) injection. 相似文献
15.
Transport in Porous Media - The effects of periodicity assumptions on the macroscopic properties of packed porous beds are evaluated using a cascaded Lattice-Boltzmann method model. The porous bed... 相似文献
16.
Yield-stress is a problematic and controversial non-Newtonian flow phenomenon. In this article, we investigate the flow of yield-stress substances through porous media within the framework of pore-scale network modelling. We also investigate the validity of the Minimum Threshold Path (MTP) algorithms to predict the pressure yield point of a network depicting random or regular porous media. Percolation theory as a basis for predicting the yield point of a network is briefly presented and assessed. In the course of this study, a yield-stress flow simulation model alongside several numerical algorithms related to yield-stress in porous media were developed, implemented and assessed. The general conclusion is that modelling the flow of yield-stress fluids in porous media is too difficult and problematic. More fundamental modelling strategies are required to tackle this problem in the future. 相似文献
19.
The extension of the classical mixture theory by the concept of volume fractions leads to the theory of porous media. In this article, the theory of porous media is generalised to micropolar constituents. The kinematic relations and the balance equations for a porous medium are developed without restricting the number of constituents. Based on the entropy inequality, the general form of the constitutive equations are derived for a binary medium consisting of a porous elastic skeleton saturated by a viscous pore-fluid. Both constituents are assumed to be compressible. Handling the saturation constraint by a Lagrangian multiplier leads to a compatibility of the proposed model to so-called hybrid and incompressible models. 相似文献
20.
In order to model the experimental compaction of clays as completely as possible, it is necessary to use the hydromechanical coupled three-dimensional theory for saturated porous media. The proposed formulation is based on elastoplasticity, more precisely on modified Cam-clay model. The identification of the parameters of the model is made by special oedometric experiments at steady state. The compaction experiments are simulated with accuracy in transient and steady states and complement those obtained in a recent study based only on steady state. 相似文献
|