首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
合成了2-[1-(3-叔丁基)吡唑基甲基]吡啶(CH2(Py)(3-ButPz)),并研究了羰基钼(钨)与该配体及其类似物2-(1-吡唑基甲基)吡啶(CH2(Py)(Pz))和2-[1-(3,5-二甲基)吡唑基甲基]吡啶(CH2(Py)(3,5-Me2Pz))的反应,合成了6个含双齿螯合的2-(1-吡唑基甲基)吡啶类配体的四羰基金属衍生物CH2(Py)(3-ButPz)M(CO)4,CH2(Py)(Pz)M(CO)4和CH2(Py)(3,5-Me2Pz)M(CO)4(M=Mo或W)。当用SnCl4处理CH2(Py)(3,5-Me2Pz)M(CO)4时,Sn-Cl键对金属中心发生氧化加成得到2个杂双核金属有机化合物CH2(Py)(3,5-Me2Pz)M(CO)3(Cl)SnCl3。所有新化合物均通过了红外和核磁的表征,CH2(Py)(3-ButPz)W(CO)4和CH2(Py)(3,5-Me2Pz)W(CO)3(Cl)SnCl3的结构还得到了X-射线单晶衍射的确证。用循环伏安法测定了四羰基金属衍生物的电化学性质。  相似文献   

2.
The modification of bis(pyrazol-1-yl)methanes by organotin halide on the methine carbon atom has been successfully carried out, and their related reactions have also been studied. Bis(3,5-dimethylpyrazol-1-yl)(iododiphenylstannyl)methane [Ph2ISnCH(3,5-Me2Pz)2] can be obtained by the selective cleavage of the Sn-Csp2 bond in bis(3,5-dimethylpyrazol-1-yl)triphenylstannylmethane with I2 in a 1:1 molar ratio, while {di(tert-butyl)chlorostannyl}bis(3,5-dimethylpyrazol-1-yl)methane [(t-Bu)2ClSnCH(3,5-Me2Pz)2] and {di(tert-butyl)chlorostannyl}bis(3,4,5-trimethylpyrazol-1-yl)methane [(t-Bu)2ClSnCH(3,4,5-Me3Pz)2] are easily prepared by the reaction of the bis(3,5-dimethylpyrazol-1-yl)methide or bis(3,4,5-trimethylpyrazol-1-yl)methide anion with di(tert-butyl)tin dichloride. The molecular structure of [(t-Bu)2ClSnCH(3,5-Me2Pz)2] determined by X-ray structure analysis indicates that bis(3,5-dimethylpyrazol-1-yl)methide acts as a bidentate monoanionic κ2-[C,N] chelating ligand. Reaction of these bis(pyrazol-1-yl)methanes functionalized by organotin halide with W(CO)5THF results in the oxidative addition of the relative electrophilic Sn-X (X = Cl or I) bond instead of the Sn-Csp3 bond to the tungsten(0) atom, yielding new metal-metal bonded complexes R2SnCHPz2W(CO)3X (R = Ph or t-Bu, Pz represents substituted pyrazol-1-yl). Furthermore, treatment of the oxidative addition product (t-Bu)2SnCH(3,5-Me2Pz)2W(CO)3Cl with n-BuLi results in known complex CH2(3,5-Me2Pz)2W(CO)4 with the loss of the organotin fragment. In addition, reaction of Ph2ISnCH(3,5-Me2Pz)2 with 2-PySNa (Py = pyridyl) leads to the replacement of iodide by 2-PyS anion to give Ph2(2-PyS)SnCH(3,5-Me2Pz)2, which subsequently reacts with W(CO)5THF to result in the decomposition of this ligand, also yielding the known bis(3,5-dimethylpyrazol-1-yl)methane derivative of CH2(3,5-Me2Pz)2W(CO)4.  相似文献   

3.
Coordination compounds of iron(II) thiocyanate with tris(3,5-dimethylpyrazol-1-yl)methane (HC(3,5-Me2Pz)3), [Fe(HC(3,5-Me2Pz)3)2](NCS)2] (I) and [Fe(HC(3,5-Me2Pz)3)(Рhz)(NCS)2] · H2O (II), where Рhz is phthalazine, are synthesized. The complexes are studied by X-ray diffraction analysis, diffuse reflectance and IR spectroscopy, and static magnetic susceptibility measurements. The single crystals are obtained, and the molecular and crystal structures of complex II and compounds [Fe(HC(3,5-Me2Pz)3)(3,5-Me2Pz)(NCS)2] · С2H5OH (III), where 3,5-Me2Pz is 3,5-dimethylpyrazole, and [Fe(HC(3,5-Me2Pz)3)2][Fe(HC(3,5-Me2Pz)3)(NCS)3]2 (IV) are determined (CIF files CCDC 1415452 (II), 1415453 (III), and 1415454 (IV)). The study of the temperature dependence μeff(Т) in a range of 2–300 K shows exchange interactions of the antiferromagnetic character between the iron(II) ions in complexes I and II.  相似文献   

4.
The modification of bis(pyrazol-1-yl)methane by sulfur or selenium on the methine carbon has been successfully carried out by the reaction of the bis(pyrazol-1-yl)methide anion, prepared in situ by the reaction of bis(pyrazol-1-yl)methane with n-BuLi, with elemental sulfur or selenium. These bis(pyrazol-1-yl)methylthiolate or selenolate anions reacted with Ph2SnCl2 to form new organotin derivatives CH(3,5-Me2Pz)2ESnPh2Cl (Pz = pyrazol-1-yl, E = S (1) or Se (2)), which have been characterized by NMR, IR and elemental analysis. The molecular structure of 2 determined by X-ray structure analysis indicates that bis(3,5-dimethylpyrazol-1-yl)methylselenolate is a bidentate monoanionic κ2-[N,Se] chelating ligand. The treatment of CH(3,5-Me2Pz)2ESnPh2Cl with W(CO)5THF resulted in the decomposition of ligands to yield pyrazole derivative of (3,5-Me2PzH)W(CO)5, while direct treatment of bis(pyrazol-1-yl)methylthiolate or selenolate anions with M(CO)5THF (M = Mo or W) formed their tricarbonyl metal anions . Succedent reaction of these carbonyl metal anions with Ph2SnCl2 or Ph3SnCl yielded heterobimetalic compounds CH(Pz)2EM(CO)3SnPhnCl3−n (n = 2 or 3), which have also been characterized by 1H NMR, IR and elemental analysis. The structure of CH(3,4,5-Me3Pz)2SW(CO)3SnPh3 (8) has been confirmed by X-ray single crystal diffraction, showing that bis(3,4,5-trimethylpyrazol-1-yl)methylthiolate acts as a tridentate, monoanionic κ3-[N,S,N] chelating ligand.  相似文献   

5.
通过双吡唑基甲基锂与二苯基乙烯基碘化锡的反应, 合成了桥头碳上带有乙烯基锡修饰的双吡唑甲烷配体。在回流的THF中这些乙烯基锡修饰的双吡唑甲烷配体(R3SnCHPz2, R3Sn为三乙烯基锡或二苯基乙烯基锡;Pz代表取代吡唑)与M(CO)5THF (M = Mo或W)反应产生杂双金属化合物R3SnCHPz2M(CO)3。在这些化合物中,一个乙烯基以h2方式配位到金属钼或钨上,双吡唑甲烷表现为一个三齿k3-(p,N,N)配体。(CH2=CH)3SnCH(3,5-Me2Pz)2W(CO)3和Ph2(CH2=CH)SnCH(3,5-Me2Pz)2W(CO)3与I2的反应也被研究。前者给出化合物CH2(3,5-Me2Pz)2W(CO)4,而后者随着有机锡的丢失产生四元金属杂环化合物CH(3,5-Me2Pz)2W(CO)3I。用PhSNa处理该四元金属杂环化合物导致碘负离子被取代,得到化合物CH(3,5-Me2Pz)2W(CO)3SPh。  相似文献   

6.
Reactions of 2-hydroxyphenyl and 2-methoxyphenylbis(pyrazol-1-yl)methanes as well as 2-hydroxyphenyl and 2-methoxyphenylbis(3,5-dimethylpyrazol-1-yl)methanes with W(CO)5THF have been carried out. Heating 2-hydroxyphenylbis(pyrazol-1-yl)methane (L1) with W(CO)5THF in THF at reflux yielded complex (L1)W(CO)4.L1, while similar reaction of 2-hydroxyphenylbis(3,5-dimethylpyrazol-1-yl)methane (L2) with W(CO)5THF resulted in the cleavage of a Csp3-N bond to generate 1,2-bis(2-hydroxyphenyl)-1,2-bis(3,5-dimethylpyrazol-1-yl)ethane (L) and pyrazole derivative W(CO)5(3,5-Me2PzH) (Pz = pyrazol-1-yl). These two fragments were connected together through strong O…H-N and O-H…N hydrogen bonds to form complex L.[W(CO)5(3,5-Me2PzH)]2. The analogous results were observed in the treatment of 2-methoxyphenylbis(pyrazol-1-yl)methane (L3) with W(CO)5THF, which gave product L′.[W(CO)5(PzH)]2 (L′ = 1,2-bis(2-methoxyphenyl)-1,2-bis(pyrazol-1-yl)ethane) as well as certain amount of complex (L3)W(CO)4. In addition, during the reaction of 2-methoxyphenylbis(3,5-dimethylpyrazol-1-yl)methane (L4) with W(CO)5THF, partial decomposition reactions took place to yield complexes (L4)W(CO)4 and W(CO)5(3,5-Me2PzH), but no hydrogen bond was found between these two moieties.  相似文献   

7.
New multidentate heteroscorpionate ligands, N-phenyl-2,2-bis(3,5-dimethylpyrazol-1-yl)thioacetamide PhHNCSCH(3,5-Me2Pz)2 (1), N-phenyl-2,2-bis(3,4,5-trimethylpyrazol-1-yl)thioacetamide PhHNCSCH(3,4,5-Me3Pz)2 (2), and ethyl 2,2-bis(3,5-dimethylpyrazol-1-yl)dithioacetate EtSCSCH(3,5-Me2Pz)2 (8), have been synthesized and their coordination chemistry studied. These heteroscorpionate ligands can act as monodentate, bidentate, or tridentate ligands, depending on the coordinate properties of different metals. Reaction of W(CO)6 with 1 or 2 under UV irradiation yields monosubstituted carbonyl tungsten complexes W(CO)5L (L = 1 or 2), in which N-phenyl-2,2-bis(pyrazol-1-yl)thioacetamide acts as a monodentate ligand by the s-coordination to the tungsten atom. In addition, these monosubstituted tungsten complexes have also been obtained by heating ligand 1 or 2 with W(CO)5THF in THF. While similar reaction of Fe(CO)5 with 1, 2, or 8 under UV irradiation results in tricarbonyl iron complexes PhHNCSCH(3,5-Me2Pz)2Fe(CO)3 (5), PhHNCSCH(3,4,5-Me3Pz)2Fe(CO)3 (6), and EtSCSCH(3,5-Me2Pz)2Fe(CO)3 (9), respectively, in which N-phenyl-2,2-bis(pyrazol-1-yl)thioacetamide or ethyl 2,2-bis(pyrazol-1-yl)dithioacetate acts as a bidentate ligand through one pyrazolyl nitrogen atom and the CS π-bond in an η2-C,S fashion side-on bonded to the iron atom to adopt a neutral bidentate κ2-(π,N) coordination mode. Treatment of the lithium salt of 1 with Co(ClO4)2 · 6H2O gives complex [PhNCSCH(3,5-Me2Pz)2]2Co(ClO4) with the oxidation of cobalt(II) to cobalt(III), in which N-phenyl-2,2-bis(3,5-dimethylpyrazol-1-yl)thioacetamide acts as a tridentate monoanionic κ3-(N,N,S) chelating ligand by two pyrazolyl nitrogen atoms and the sulfur atom of the enolized thiolate anion.  相似文献   

8.
N, N-bis(pyrazol-1-ylmethyl)aminomethane (bpam) and N, N-bis(3, 5-dimethylpyrazol-1-ylmethyl)aminomethane (bdmpam) reacted with M(CO)6 or M(CO)3(CH3CN)3 in acetonitrile to give respectively fac-(bpam)M(CO)3 and fac-(bdmpam)M(CO)3 in good yields (M=Cr, Mo, W). These complexes are characterized by elemental analysis, IR, and NMR and compared with the related polypyrazolylborate complexes of the group VI metal carbonyls.  相似文献   

9.
The chemistry of bis(3,5-dimethylpyrazolyl)methane complexes of copper(I) has been investigated and a dinuclear copper(I) derivative of formula {Cu2[μ-CH2(3,5-Me2Pz)2]2}(TfO)2 [TfO = trifluoromethanesulphonate anion, ], characterized by an uncommon bridging coordination of the bis(pyrazolyl)methane ligands, has been isolated and characterized by X-ray diffraction methods. Moreover, new olefin derivatives of general formula [Cu[CH2(3,5-Me2Pz)2](olefin)]TfO have been prepared (olefin: coe = cyclooctene, van = 4-vinylanisole, nbe = norbornene), their carbonylation reactions, {Cu[CH2(3,5-Me2Pz)2](olefin)}TfO + CO ? {Cu[CH2(3,5-Me2Pz)2](CO)}TfO + olefin, have been studied gas volumetrically and the thermodynamical parameters of the equilibria for the displacement of the coordinated olefin by carbon monoxide have been determined.  相似文献   

10.
赵雪梅  唐良富  杨攀  王积涛 《中国化学》2003,21(11):1447-1450
IntroductionPoly(pyrazol 1 yl)alkanes,especiallybis(pyrazol 1 yl)alkanes ,havebeenoneofpopularpolydentatenitrogendonorligandssinceTrofimenko’sfirstreport1andJulia’slatermodification .2 Ithasbeenfoundthatthecoordinationbehavioroftheseligandscaneasilybeadjustedbychang ingtheelectronicandstericcharacteristicsofsubstituentsonthepyrazolering .Recentinvestigationshavealsoshownthatthecentralcarbonatomoftheseligandscanbemodifiedbythevariousfunctionalgroupstoformversatileheteroscorpionateligands ,wh…  相似文献   

11.
Iron(II) complexes with tris(3,5-dimethylpyrazol-1-yl)methane {HC(3,5-Me2Pz)3} of the composition [Fe{HC(3,5-Me2Pz)3}2]Am · nH2O (A = Cl? (I), ClO 4 ? (II), SO 4 2? (III), CF3SO 3 ? (IV), m = 1, 2, n = 0.1) are synthesized. The compounds are studied by static magnetic susceptibility, IR and diffuse reflectance spectroscopy, and X-ray structure analysis. The crystal structures of two polymorphous modifications of the [Fe{HC(3,5-Me2Pz)3}2](ClO4)2 (IIa and IIb) and [Fe{HC(3,5-Me2Pz)3}2](CF3SO3)2 (IV) complexes are determined. The temperature dependence ??eff(T) shows that the spin crossover 1 A 1 ai 5 T 2 is observed in the polycrystalline phase of complex I and in one of the single-crystal phases of complex II (IIa) and is accompanied by thermochromism (the change of the dark pink color ai to white).  相似文献   

12.
N-(Phenyl)alkylthiosemicarbazones of 3,5-dichloro- and 3,5-diiodosalicylic aldehydes (H2L) and their copper(II) complexes [Cu(HL)(CH3OH)]+(NO3) have been synthesized. The structure of one of the complexes has been determined by X-ray analysis.  相似文献   

13.
The synthesis and properties of rhodium(I) complexes of formulae [“RhCl(diolefin)”2(L)] (or [Rh(Cl(diolefin)(L)]), and [Rh(diolefin)(L)]n(ClO4)n are reported. These complexes react with carbon monoxide to yield the related carbonyl derivatives. Ligands used were pyridazine, 4,6-dimethyl-pyrimidine, 4,6-bis(3,5-dimethylpyrazol-1-yl)pyrimidine, 3,6-bis(3,5-dimethylpyrazol-1-yl)pyridazine and 3-(3,5-dimethyl-pyrazol-1-yl)-6-chloropyridazine. Related iridium(I) and gold(I) compounds are also reported.  相似文献   

14.
Reduction of W(CO)3(PMTA) (PMTA = 1,1,4,7,7-pentamethyldiethylenetriamine) by six equivalents of potassium metal in liquid ammonia provides an incompletely characterized highly reduced carbonyltungstate ion which reacts with several electrophiles to provide derivatives containing only tungsten tricarbonyl units. These include W(CO)3(NH3)3, [W3(CO)9(μ-OC2H5)(μ3-OC2H5)2]3-, HW(CO)3(SnPh3)32- and the unusual [(Ph3Sn)2{(Ph2Sn)2OEt}W(CO)3]?. The latter compound results from an unprecedented phenyl-tin cleavage in the reaction of triphenyltin chloride and the highly reduced carbonyltungstate ion. Triphenyltin derivatives of the unknown M(CO)36- (M = Cr, Mo and W) have also been prepared by reacting M(CO)3(SnPh3)33- with Brønsted acids and Ph3SnCl. From these reactions the previously unknown HM(CO)3(SnPh3)32- (M = Cr, Mo and W) and M(CO)3(Ph3Sn)42- (M = Mo and W) have been isolated and characterized. The latter are the first compounds containing more than three triphenyltin units attached to one transition metal.  相似文献   

15.
From the linear correlation of the chemical shift (19F) in compounds R-C≡C-C6H4-F-p (reference PhF, solvent to-luene) with the Hammett σ p constants of substituents R, the σ p constants of organometallic substituents R [Cp(CO)3Mo, Cp(CO)3W, Cp(CO)2Fe, Cp(PPh3)Ni, Ph2Bi, Ph2Sb, Ph3Sn] were calculated. The logarithm of the rate constant of magnesium oxidation with compounds RCl linearly correlates with the σ p constants of the organometallic groups R.  相似文献   

16.
To further extend diiron subsite models of [FeFe]-hydrogenases, the various substitutions of all-carbonyl diiron complex Fe2(μ-Me2pdt)(CO)6 ( A , Me2pdt = (SCH2)2CMe2) with monophosphines or small bite-angle diphosphines are studied as follows. Firstly, the monodentate complexes Fe2(μ-Me2pdt)(CO)5{κ1-P(C6H4R-p)3} [R = Me ( 1a ) and Cl ( 1b )] and Fe2(μ-Me2pdt)(CO)5{κ1-Ph2PX'} [X' = NHPh ( 2a ) and CH2PPh2 ( 2b )] are readily afforded through the Me3NO-assisted reactions of A with monophosphines P(C6H4R-p)3 (R = Me, Cl) and diphosphines (Ph2P)2X (X = NPh, CH2 (dppm)) in MeCN at room temperature, respectively. Secondly, the chelate complexes Fe2(μ-Me2pdt)(CO)4(κ2-(Ph2P)2X) [X = NPh ( 3a ) and NBun ( 3b )] can be efficiently prepared by the UV-irradiated reactions of A with small bite-angle diphosphines (Ph2P)2X (X = NPh, NBun) in toluene. Thirdly, the bridge complexes Fe2(μ-Me2pdt)(CO)4(μ-(Ph2P)2X) [X = NPh ( 4a ) and CH2 ( 4b )] are well obtained from the refluxing solutions of A and diphosphines (Ph2P)2X (X = NPh, CH2) in xylene. Rarely, the diphosphine-bridge complex 4b may be produced in low yield via the UV-irradiated solutions of A and the dppm ligand in toluene emitting at 365 nm. Eight new complexes obtained above have been well characterized by using element analysis, FT-IR, NMR (1H, 31P) spectroscopies, and particularly for 1a , 1b , 2a , 3b , 4a , 4b by X-ray crystallography. Meanwhile, the electrochemical and electrocatalytic properties of three representative complexes 2a , 3a , and 4a with pendant N-phenyl groups are investigated and compared by using cyclic voltammetry (CV) in the absence and presence of trifluoroacetic acid (TFA) as a proton source, indicating that they are all found to be active for electrocatalytic proton reduction to hydrogen (H2).  相似文献   

17.
N,N-Bis(3,5-dimethylpyrazol-1-yl)methane (H2CPz'2) reacts with the hexacarbonyls of chromium, molybdenum, and tungsten to give cis-(H2CPz'2)M(CO)4 derivatives with M=Cr, Mo, W. The direct allyl bromination of these complexes is also investigated and only the molybdenum complex is converted into (H2CPz'2)Mo(CO)2(π-C3H3)(Br).  相似文献   

18.
The reaction of the halocarbyne [W(≡CBr)(CO)2(Tp*)] (Tp*=hydrotris(3,5‐dimethylpyrazol‐1‐yl)borate) with trimethylsilyl‐butadiyne, mediated by [Pd(PPh3)4] and CuI, affords the first pentadiynylidyne complex [W(≡CC≡CC≡CSiMe3)(CO)2(Tp*)]. Desilylation provides a general route to heterobimetallic pentacarbido complexes, including [(Tp*)(CO)2W(μ‐C5)(PPh3)2Ru(η‐C5H5)] and [(Ph3P)2(CO)HIr{(μ‐C5)W(CO)2(Tp*)}2].  相似文献   

19.
Dinuclear complexes of CuII with 3-(3,5-dimethylpyrazol-1-yl)-6-(2-hydroxyethylami-no)-1,2,4,5-tetrazine (1) and CoII with 3-(3,5-dimethylpyrazol-1-yl)-6-(piperidin-1-yl)-1,2,4,5- tetrazine (2) were synthesized and structurally characterized, and the magnetic (SQUID) and resonance (EPR) properties of van der Waals crystals based on these complexes were studied. Unusual behavior of the effective magnetic moment μeff(T) is observed at T < 60 K. A nonmonotonic increase in μeff(?) for 1 (s~6 %) and a 20% reduction of μeff(?) for 2 have a common origin and are due to the influence of spin-orbital coupling on the character of the splitting between the t2g and eg levels of the central ion. Distortions of the coordination site “switch on” a positive (1) or negative (2) contribution of the orbital magnetic moment near 6 K. Irreversible temperature behavior of μeff(T) in the heating and cooling regimes in the vicinity of 60 K suggests that the character of structural distortions and the magnetic properties are related to ligand geometry. This factor plays a significant role in crystal engineering of magnetoactive structures with polynitrogen ligands.  相似文献   

20.
Coordinatively Unsaturated Diruthenium Complexes: Synthesis and X‐ray Crystal Structures of [Ru2(CO)n(μ‐H)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] (n = 4; 5) and [Ru2(CO)4(μ‐CH2)(μ‐H)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] The reaction of [Ru2(μ‐CO)(CO)5(μ‐H)(μ‐PtBu2)(tBu2PH)] ( 2 ) with dppm yields the dinuclear species [Ru2(μ‐CO)(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 3 ) (dppm = Ph2PCH2PPh2). Under thermal or photolytic conditions 3 loses very easily one carbonyl ligand and affords the corresponding electronically and coordinatively unsaturated complex [Ru2(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 4 ). 4 is also obtainable by an one‐pot synthesis from [Ru3(CO)12], an excess of tBu2PH and stoichiometric amounts of dppm via the formation of [Ru2(CO)4(μ‐H)(μ‐PtBu2)(tBu2PH)2] ( 1 ). 4 exhibits a Ru–Ru double bond which could be confirmed by addition of methylene to the dimetallacyclopropane [Ru2(CO)4(μ‐CH2)(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 5 ). The molecular structures of 3 , 4 and 5 were determined by X‐ray crystal structure analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号