共查询到20条相似文献,搜索用时 15 毫秒
1.
Beyhan Yiğit Murat Yiğit İsmail Özdemir Engin Çetinkaya 《Transition Metal Chemistry》2012,37(3):297-302
Three RuCl2(η6-arene, η1-carbene) and two RuCl2(NHC)(arene) complexes have been prepared by the reaction of bis(1,3-dialkylperhydrobenzimidazol-2-ylidene) (1) and bis(1,3-dialkyl-4-methylzimidazolin-2-ylidene) (3) with [RuCl2(arene)]2 in toluene and characterized by elemental analysis, 1H NMR, 13C NMR and IR spectroscopy. The catalytic activities of these complexes were examined in the transfer hydrogenation of aromatic
ketones using 2-propanol as hydrogen source. 相似文献
2.
J. G. Małecki 《Transition Metal Chemistry》2010,35(7):801-808
The complexes [(C6H6)RuCl2(Hmtp)] and [(C6H6)RuCl2(C4H4N2)] have been prepared and studied by IR, 1H NMR, UV–VIS spectroscopy and X-ray crystallography. The complexes were prepared by reactions of [(C6H6)RuCl2]2 with 7-hydroxy-5-methyl[1,2,4]triazolo[1,5-a]pyrimidine (Hmtp) and pyrimidine, respectively, in methanol. The electronic structures and UV–Vis spectra of the complexes
have been calculated using the TD–DFT method. 相似文献
3.
Hayati Türkmen 《应用有机金属化学》2012,26(12):731-735
The complex trans,cis‐[RuCl2(PPh3)2(ampi)] (2) was prepared by reaction of RuCl2(PPh3)3 with 2‐aminomethylpiperidine(ampi) (1). [RuCl2(PPh2(CH2)nPPh2)(ampi) (n = 3, 4, 5)] (3–5) were synthesized by displacement of two PPh3 with chelating phosphine ligands. All complexes (2–5) were characterized by 1 H, 13C, 31P NMR, IR and UV‐visible spectroscopy and elemental analysis. They were found to be efficient catalysts for transfer hydrogen reactions. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
4.
Z.K. Yu F.L. Zeng H.X. Deng J.H. Dong H.M. Wang 《Journal of organometallic chemistry》2007,692(11):2306-2313
Complex RuCl2(PPh3)(iBu-BTP) (5) was synthesized by the reaction of 2,6-bis(5,6-bis(iso-butyl)-1,2,4-triazin-3-yl)pyridine (iBu-BTP) and RuCl2(PPh3)3 in refluxing toluene, and its molecular structure was confirmed by X-ray crystallographic determination. Complex 5 was applied as a catalyst for transfer hydrogenation of ketones and exhibited catalytic activity comparable to RuCl2(PPh3)(Me4BPPy) (1) (Me4BPPy = bis(3,5-dimethylpyrazol-1-yl)pyridine) in some cases. The difference between the catalytic activity of 5 and 1 is attributed to the significantly different arrangement and positions of the PPh3 and chlorides and also to the different electron density on the N-heterocycles. Complex 1 exhibited good to excellent catalytic activity in hydrogenation of ketones under mild conditions. These results have suggested new applications of iBu-BTP and Me4BPPy as promising planar tridentate pseudo-N3 ligands to construct highly active transition-metal catalysts. 相似文献
5.
Novel chiral tetraaza ligands(R)-N,N′-bis[2-(piperidin-1-yl)benzylidene]propane-l,2-diamine 6 and(S)-N-[2-(piperidin-l- yl)benzylidene]-3-{[2-(piperidin-1-yl)benzylidene]amino}-alanine sodium salt 7 have been synthesized and fully characterized by NMR,IR,MS and CD spectra.The catalytic property of the ligands was investigated in Ir-catalyzed enantioselective transfer hydrogenation of ketones.The corresponding optical active alcohols were obtained with high yields and moderate ees under mild reaction conditions. 相似文献
6.
Nandhagopal RajaRengan Ramesh 《Tetrahedron letters》2012,53(35):4770-4774
A convenient and general method of synthesis of binuclear ruthenium(II) pyridazine complex was reported. The synthesized complex was characterized by analytical and spectral methods. The structure of the complex was confirmed by X-ray diffraction technique and was found to be an efficient catalyst for the transfer hydrogenation of ketones with excellent conversions in the presence of isopropanol/KOH at 82 °C. The effect of solvents, bases, and different catalyst/substrate ratio for the reaction was also investigated. 相似文献
7.
Novel cyclohexyl‐based aminophosphine ligands and use of their Ru(II) complexes in transfer hydrogenation of ketones 下载免费PDF全文
Cezmi Kayan Nermin Meriç Murat Aydemir Yusuf Selim Ocak Ak𝚤n Baysal Hamdi Temel 《应用有机金属化学》2014,28(2):127-133
Two new aminophosphines – furfuryl‐(N‐dicyclohexylphosphino)amine, [Cy2PNHCH2–C4H3O] ( 1 ) and thiophene‐(N‐dicyclohexylphosphino)amine, [Cy2PNHCH2–C4H3S] ( 2 ) – were prepared by the reaction of chlorodicyclohexylphosphine with furfurylamine and thiophene‐2‐methylamine. Reaction of the aminophosphines with [Ru(η6‐p‐cymene)(μ‐Cl)Cl]2 or [Ru(η6‐benzene)(μ‐Cl)Cl]2 gave corresponding complexes [Ru(Cy2PNHCH2–C4H3O)(η6‐p‐cymene)Cl2] ( 1a ), [Ru(Cy2PNHCH2–C4H3O)(η6‐benzene)Cl2] ( 1b ), [Ru(Cy2PNHCH2–C4H3S)(η6‐p‐cymene)Cl2] ( 2a ) and [Ru(Cy2PNHCH2–C4H3S)(η6‐benzene)Cl2] ( 2b ), respectively, which are suitable catalyst precursors for the transfer hydrogenation of ketones. In particular, [Ru(Cy2PNHCH2–C4H3S)(η6‐benzene)Cl2] acts as a good catalyst, giving the corresponding alcohols in 98–99% yield in 30 min at 82 °C (up to time of flight ≤ 588 h?1). Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
8.
Cesar A. Madrigal 《Journal of organometallic chemistry》2008,693(15):2535-2540
The catalytic activity in asymmetric transfer hydrogenation of ketones using octahedral and half-sandwich (η5-indenyl and η6-arene) ruthenium(II) complexes containing the chiral ligand (4S)-2-[(Sp)-2-(diphenylphosphino)ferrocenyl]-4-(isopropyl)oxazoline (FcPN) has been explored. Catalytic studies with complex fac-[RuCl2{η2(P,N)-FcPN}(PMe3)2] (1) show excellent TOF values (9600 h−1). Experiments in the presence of free FcPN, which lead to an increase in conversion rates and ee values when the catalyst is complex [Ru(η5-C9H7){κ2(P,N)-FcPN}(PPh3)][PF6] (4) have been carried out. The characterization of the new complexes mer-trans-[RuCl2{P(OMe)3}2{κ2(P,N)-FcPN}] and of the water-soluble complexes fac- and mer-trans-[RuCl2(PTA)2{κ2(P,N)-FcPN}] is also reported. 相似文献
9.
Prashant Kumar 《Journal of organometallic chemistry》2010,695(7):994-1001
Reactions of the ruthenium complexes [RuH(CO)Cl(PPh3)3] and [RuCl2(PPh3)3] with hetero-difunctional S,N-donor ligands 2-mercapto-5-methyl-1,3,5-thiadiazole (HL1), 2-mercapto-4-methyl-5-thiazoleacetic acid (HL2), and 2-mercaptobenzothiazole (HL3) have been investigated. Neutral complexes [RuCl(CO)(PPh3)2(HL1)] (1), [RuCl(CO)(PPh3)2(HL2)] (2), [RuCl(CO)(PPh3)2(HL3)] (3), [Ru(PPh3)2(HL1)2] (4), [RuCl(PPh3)3(HL2)] (5), and [RuCl(PPh3)3(HL3)] (6) imparting κ2-S,N-bonded ligands have been isolated from these reactions. Complexes 1 and 4 reacted with diphenyl-2-pyridylphosphine (PPh2Py) to give neutral κ1-P bonded complexes [RuCl(CO)(κ1-P-PPh2Py)2(HL1)] (7), and [Ru(κ1-P-PPh2Py)2(HL1)2] (8). Complexes 1-8 have been characterized by analytical, spectral (IR, NMR, and electronic absorption) and electrochemical studies. Molecular structures of 1, 2, 4, and 7 have been determined crystallographically. Crystal structure determination revealed coordination of the mercapto-thiadiazole ligands (HL1-HL3) to ruthenium as κ2-N,S-thiolates and presence of rare intermolecular S-S weak bonding interaction in complex 1. 相似文献
10.
Several ruthenium and rhodium complexes including 2,2′‐dipyridylamine ligands substituted at the central N atom by an alkyl chain terminated by a maleimide functional group were tested along with a newly synthesized Rh(III) complex of unsubstituted 2,2′‐dipyridylamine as catalysts in the transfer hydrogenation of aryl ketones in neat water with formate as hydrogen donor. All of them except one led to the secondary alcohol products with conversion rates depending on the metal complex. Site‐specific anchoring of the N‐maleimide complexes to the single free cysteine residue of the cysteine endoproteinase papain endowed this protein with transfer hydrogenase properties towards 2,2,2‐trifluoroacetophenone. Quantitative conversions were reached with the Rh‐based biocatalysts, while modest enantioselectivities were obtained in certain reactional conditions. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
11.
Sui-Seng C Hadzovic A Lough AJ Morris RH 《Dalton transactions (Cambridge, England : 2003)》2007,(24):2536-2541
The complexes RuHCl((R)-binap)(L-NH2) with L-NH2 = (S)-histidine-Me-ester (1), histamine (3), (S)-histidinol (4) or 1-Me-(S)-histidine-Me-ester (5), and RuHCl((S)-binap)(L-NH(2)) with L-NH2 = (S)-histidine-Me-ester (2) have been prepared in 60-81% overall yields in a one-pot, three-step procedure from the precursor RuCl2(PPh3)3. Their octahedral structures with hydride trans to chloride were deduced from their NMR spectra and confirmed by the results of a single crystal X-ray diffraction study for complex 3. Under H2 and in the presence of KOtBu, complexes 1-5 in 2-propanol form moderately active catalyst precursors for the asymmetric hydrogenation of acetophenone to 1-phenylethanol. Complex 5 is more active and enantioselective than complexes 1-4, allowing complete conversion to 1-phenylethanol in 46% e.e. (R) in 72 h at 20 degrees C under 1 MPa of H2 with substrate : catalyst : base = 2000 : 1 : 30. Complex 5, when activated, also catalyzes the hydrogenation of trans-4-phenyl-3-buten-2-one to exclusively the allyl alcohol 4-phenyl-3-buten-2-ol under 2.7 MPa of H2 at 50 degrees C in 2-propanol. This selectivity for C=O versus C=C hydrogenation is consistent with a mechanism involving the outer sphere transfer of hydride and proton to the polar bond. Further extensions to complexes with peptides with N-terminal histidine groups appear feasible on the basis of the current work. 相似文献
12.
Dominic P. Halbach 《Journal of organometallic chemistry》2006,691(15):3349-3361
A series of cationic, half-sandwich ruthenium complexes with the general formula [(η6-arene)RuCl(R1S-C6H4-2-CHNR2)]+ (arene = p-cymene or hexamethylbenzene; R1 = CH2Ph, iPr, or Et; R2 = aryl) have been prepared from the reaction of [(η6-arene)RuCl2]2 with various N,S-donor Schiff base ligands derived from 2-(alkylthio)benzaldehyde and several primary amines. All of the ruthenium complexes were characterized by IR, 1H NMR, electrochemistry, and UV/Vis spectroscopies. The p-cymene complexes undergo irreversible oxidations while the hexamethylbenzene complexes undergo quasi-reversible oxidations. The molecular structures of ligand 1a and complexes 4a, 4l, and 5e were determined by X-ray crystallography. 相似文献
13.
Vicinal carbonyl oxime (HL1) and oxime-imine (H2L2) ligands and their mononuclear Ru(III) and Cu(II), heterodinuclear Ru(III)-Mn(II), Ru(III)-Ni(II), Ru(III)-Cu(II), and heterotrinuclear
Ru(III)-Cu(II)-Ru(III) chelates were synthesized and characterized by elemental analysis, molar conductivity, IR, ESR, ICP-OES,
magnetic moment measurements, and thermal analyses studies. The free ligands were also characterized by 1H NMR spectra. The carbonyl-oxime ligand coordinates through the oxygen of =N-OH to form a six-membered chelate ring. The
quadridentate tetraaza ligand (H2L2) obtained by condensing of the bidentate ligand 1-p-diphenylmethane-2-hydroxyimino-2-(1-naphthylamino)-1-ethanone (HL1) with 1,2-phenylenediamine coordinates with Ru(III) through its nitrogen donors in the equatorial position with the loss
of one of the oxime protons and concomitant formation of an intramolecular hydrogen bond. Stoichiometric and spectral results
of the metal complexes indicated that the metal: ligand ratios in the mononuclear complexes of the ligand (HL1) were found to be 1: 2, while these ratios were 1: 1 in the mononuclear complexes of the ligand (H2L2). The metal: ligand ratios of the dinuclear complexes were found to be 2: 1, and this ratio was 3: 2 in the trinuclear complex.
The article is published in the original. 相似文献
14.
Rosa Tribó Josefina Pons Ángel Álvarez-Larena Josep Ros 《Journal of organometallic chemistry》2005,690(17):4072-4079
The new potentially bidentate pyrazole-phosphinite ligands [(3,5-dimethyl-1H-pyrazol-1-yl)methyl diphenylphosphinite] (L1) and [2-(3,5-dimethyl-1H-pyrazol-1-yl)ethyl diphenylphosphinite] (L2) were synthesised and characterised. The reaction of L1 and L2 with the dimeric complexes [Ru(η6-arene)Cl2]2 (arene = p-cymene, benzene) led to the formation of neutral complexes [Ru(η6-arene)Cl2(L)] (L = L1, L2) where the pyrazole-phosphinite ligand is κ1-P coordinated to the metal. The subsequent reaction of these complexes with NaBPh4 or NaBF4 produced the [Ru(η6-p-cymene)Cl(L2)][BPh4] and [Ru(η6-benzene)Cl(L2)][BF4] compounds which contain the pyrazole-phosphinite ligand κ2-P,N bonded to ruthenium. All the complexes were fully characterised by analytical and spectroscopic methods. The structure of the complex [Ru(η6-p-cymene)Cl(L2)][BPh4] was also determined by a X-ray single crystal diffraction study. 相似文献
15.
Weiqiang Tan 《Journal of organometallic chemistry》2007,692(24):5395-5402
Phosphine-pyrazolyl based tripod ligands ROCH2C(CH2Pz)2(CH2PPh2) (R = H, Me, allyl; Pz = pyrazol-1-yl) were efficiently synthesized and characterized. Reactions of these ligands with [Ru(η6-p-cymene)Cl2]2 afforded complexes of the type [Ru(η6-p-cymene)Cl2](L) (6-8) in which the ligands exhibit κ1-P-coordination to the metal center. Complex [Ru(η6-p-cymene)Cl2{Ph2PCH2C(CH2OH)(CH2Pz)2}] (6) underwent chloride-dissociation in CH2Cl2/MeCN to give complex [RuCl(η6-p-cymene){κ2(P,N)-Ph2PCH2C(CH2OH)(CH2Pz)2}][Cl] (9). Complexes 6-9 demonstrated poor to moderate catalytic activity in the transfer hydrogenation of acetophenone. All these complexes were fully characterized by analytical and spectroscopic methods and their molecular structures were determined by X-ray crystallographic study. 相似文献
16.
4-Vinylbenzyl-substituted Ag(I) N-heterocyclic carbene (NHC) complexes and Ru(II) NHC complexes have been synthesized. The Ag(I) complexes were synthesized from the imidazolium salts and Ag2O in dichloromethane at room temperature. The Ru(II) complexes were prepared from Ag(I) NHC complexes by transmetallation. The six 4-Vinylbenzyl-substituted Ag(I) NHC complexes and six 4-Vinylbenzyl-substituted Ru(II) NHC complexes have been characterized by spectroscopic techniques and elemental analyses. The Ru(II) NHC complexes show catalytic activity for the transfer hydrogenation of ketones. 相似文献
17.
New iminophosphine–Ru(II) complexes and their application in hydrogenation and transfer hydrogenation 下载免费PDF全文
Ruthenium complexes [RuCl2L2] were prepared by treating [RuCl2(p‐cymene)]2 with structurally similar N‐(2‐(diphenylphosphino)benzylidene)‐3‐methylpyridin‐2‐amine, 4‐(2‐(diphenylphosphino)benzylideneamino)‐3‐methylphenol and 4‐(2‐(2‐(diphenylphosphino)benzylideneamino)ethyl)phenol refluxed in toluene. These complexes were used as catalysts for the transfer hydrogenation of acetophenones in 2‐propanol and for the direct hydrogenation of styrenes under hydrogen pressure. The results of the catalytic studies provide evidence that these complexes function as excellent catalysts for hydrogenation and transfer hydrogenation. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
18.
A series of o-phenanthroline-substituted ruthenium(II) complexes containing 2,2′-dipyridyl, 2-(2-pyridyl)benzimidazole, 2-(2-pyridyl)-N-methylbenzimidazole, 4-carboxymethyl-4′-methyl-2,2′-dipyridyl, and/or 4,4′-dimethyl-2,2′-dipyridyl ligands were synthesized and examined as potent electrochemiluminescent (ECL) materials. The characteristics of these complexes, regarding their electrochemical redox potentials and relative ECL intensities for tripropylamine were studied. As found in a 2,2′-bipyridyl-substituted ruthenium(II) complexes, a good correlation between the observed ECL intensity and the donor ability of α-diimine ligands was observed, i.e., the ECL intensity of the Ru(II) complex decreased with an increase in the ligand donor ability. The ECL efficiency increased as the number of substitutions of o-phenanthroline (o-phen) to metal complexes increased. 相似文献
19.
20.
Abdur-Rashid K Clapham SE Hadzovic A Harvey JN Lough AJ Morris RH 《Journal of the American Chemical Society》2002,124(50):15104-15118
The complexes trans-RuH(Cl)(tmen)(R-binap) (1) and (OC-6-43)-RuH(Cl)(tmen)(PPh(3))(2) (2) are prepared by the reaction of the diamine NH(2)CMe(2)CMe(2)NH(2) (tmen) with RuH(Cl)(PPh(3))(R-binap) and RuH(Cl)(PPh(3))(3), respectively. Reaction of KHB(sec)Bu(3) with 1 yields trans-Ru(H)(2)(R-binap)(tmen) (5) while reaction of KHB(sec)Bu(3) or KO(t)Bu with 2 under Ar yields the new hydridoamido complex RuH(PPh(3))(2)(NH(2)CMe(2)CMe(2)NH) (4). Complex 4 has a distorted trigonal bipyramidal geometry with the amido nitrogen in the equatorial plane. Loss of H(2) from 5 results in the related complex RuH(R-binap)(NH(2)CMe(2)CMe(2)NH) (3). Reaction of H(2) with 4 yields the trans-dihydride (OC-6-22)-Ru(H)(2)(PPh(3))(2)(tmen)(6). Calculations support the assignment of the structures. The hydrogenation of acetophenone is catalyzed by 5 or 4 in benzene or 2-propanol without the need for added base. For 5 in benzene at 293 K over the ranges of concentrations [5] = 10(-)(4) to 10(-)(3) M, [ketone] = 0.1 to 0.5 M, and of pressures of H(2) = 8 to 23 atm, the rate law is rate = k[5][H(2)] with k = 3.3 M(-1) s(1), DeltaH++ = 8.5 +/- 0.5 kcal mol(-1), DeltaS++ = -28 +/- 2 cal mol(-1) K(-1). For 4 in benzene at 293 K over the ranges of concentrations [4] = 10(-4) to 10(-3) M, [ketone] 0.1 to 0.7 M, and of pressures of H(2) = 1 to 6 atm, the preliminary rate law is rate = k[4][H(2)] with k = 1.1 x 10(2) M(-1) s(-1), DeltaH++ = 7.6 +/- 0.3 kcal mol(-1), DeltaS++ = -23 +/- 1 cal mol(-1) K(-1). Both theory and experiment suggest that the intramolecular heterolytic splitting of dihydrogen across the polar Ru=N bond of the amido complexes 3 and 4 is the turn-over limiting step. A transition state structure and reaction energy profile is calculated. The transfer of H(delta+)/H(delta-) to the ketone from the RuH and NH groups of 5 in a Noyori metal-ligand bifunctional mechanism is a fast process and it sets the chirality as (R)-1-phenylethanol (62-68% ee) in the hydrogenation of acetophenone. The rate of hydrogenation of acetophenone catalyzed by 5 is slower and the ee of the product is low (14% S) when 2-propanol is used as the solvent, but both the rate and ee (up to 55% R) increase when excess KO(t)Bu is added. The formation of ruthenium alkoxide complexes in 2-propanol might explain these observations. Alkoxide complexes [RuP(2)]H(OR)(tmen), [RuP(2)] = Ru(R-binap) or Ru(PPh(3))(2), R= (i) Pr, CHPhMe, (t)Bu, are observed by reacting the alcohols (i)PrOH, phenylethanol, and (t)BuOH with the dihydrides 5 and 6, respectively, under Ar. In the absence of H(2), the amido complexes 3 and 4 react with acetophenone to give the ketone adducts [RuP(2)]H(O=CPhMe)(NH(2)CMe(2)CMe(2)NH) in equilibrium with the enolate complexes trans- [RuP(2)](H)(OCPh=CH(2))(tmen) and eventually the decomposition products [RuP(2)]H(eta(5)-CH(2)CPhCHCPhO), with the binap complex characterized crystallographically. In general, proton transfer from the weakly acidic molecules dihydrogen, alcohol, or acetophenone to the amido nitrogen of complexes 3 and 4 is favored in two ways when the molecule coordinates to ruthenium: (1) an increase in acidity of the molecule by the Lewis acidic metal and (2) an increase in the basicity of the amido nitrogen caused by its pyramidalization. The formato complexes trans-[RuP(2)]H(OCHO)(tmen) were prepared by reacting the respective complex 4 or 5 with formic acid. The crystal structure of RuH(OCHO)(PPh(3))(2)(tmen) displays similar features to the calculated transition state for H(delta+)/H(delta-) transfer to the ketone in the catalytic cycle. 相似文献