首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
If V is a (possibly infinite) set, G a permutation group on ${V, v\in V}$ , and Ω is an orbit of the stabiliser G v , let ${G_v^{\Omega}}$ denote the permutation group induced by the action of G v on Ω, and let N be the normaliser of G in Sym(V). In this article, we discuss a relationship between the structures of G v and ${G_v^\Omega}$ . If G is primitive and G v is finite, then by a theorem of Betten et?al. (J Group Theory 6:415–420, 2003) we can conclude that every composition factor of the group G v is also a composition factor of the group ${G_v^{\Omega(v)}}$ . In this paper we generalize this result to possibly imprimitive permutation groups G with infinite vertex-stabilisers, subject to certain restrictions that can be expressed in terms of the natural permutation topology on Sym(V). In particular, we show the following: If ${\Omega=u^{G_v}}$ is a suborbit of a transitive closed subgroup G of Sym(V) with a normalizing overgroup N?≤ N Sym(V)(G) such that the N-orbital ${\{(v^g,u^g) \mid u\in \Omega, g\in N\}}$ is locally finite and strongly connected (when viewed as a digraph on V), then every closed simple section of G v is also a section of ${G_v^\Omega}$ . To demonstrate that the topological assumptions on G and the simple sections of G v cannot be omitted in this statement, we give an example of a group G acting arc-transitively on an infinite cubic tree, such that the vertex-stabiliser G v is isomorphic to the modular group ${{\rm PSL}(2,\mathbb{Z}) \cong C_2*C_3}$ , which is known to have infinitely many finite simple groups among its sections.  相似文献   

2.
Let W ì \BbbR2\Omega \subset \Bbb{R}^2 denote a bounded domain whose boundary ?W\partial \Omega is Lipschitz and contains a segment G0\Gamma_0 representing the austenite-twinned martensite interface. We prove infu ? W(W) òW j(?u(x,y))dxdy=0\displaystyle{\inf_{{u\in \cal W}(\Omega)} \int_\Omega \varphi(\nabla u(x,y))dxdy=0}  相似文献   

3.
Given a graph G = (V, E), a set W í V{W \subseteq V} is said to be a resolving set if for each pair of distinct vertices u, v ? V{u, v \in V} there is a vertex x in W such that d(u, x) 1 d(v, x){d(u, x) \neq d(v, x)} . The resolving number of G is the minimum cardinality of all resolving sets. In this paper, conditions are imposed on resolving sets and certain conditional resolving parameters are studied for honeycomb and hexagonal networks.  相似文献   

4.
For a graph G of order |V(G)| = n and a real-valued mapping f:V(G)?\mathbbR{f:V(G)\rightarrow\mathbb{R}}, if S ì V(G){S\subset V(G)} then f(S)=?w ? S f(w){f(S)=\sum_{w\in S} f(w)} is called the weight of S under f. The closed (respectively, open) neighborhood sum of f is the maximum weight of a closed (respectively, open) neighborhood under f, that is, NS[f]=max{f(N[v])|v ? V(G)}{NS[f]={\rm max}\{f(N[v])|v \in V(G)\}} and NS(f)=max{f(N(v))|v ? V(G)}{NS(f)={\rm max}\{f(N(v))|v \in V(G)\}}. The closed (respectively, open) lower neighborhood sum of f is the minimum weight of a closed (respectively, open) neighborhood under f, that is, NS-[f]=min{f(N[v])|v ? V(G)}{NS^{-}[f]={\rm min}\{f(N[v])|v\in V(G)\}} and NS-(f)=min{f(N(v))|v ? V(G)}{NS^{-}(f)={\rm min}\{f(N(v))|v\in V(G)\}}. For W ì \mathbbR{W\subset \mathbb{R}}, the closed and open neighborhood sum parameters are NSW[G]=min{NS[f]|f:V(G)? W{NS_W[G]={\rm min}\{NS[f]|f:V(G)\rightarrow W} is a bijection} and NSW(G)=min{NS(f)|f:V(G)? W{NS_W(G)={\rm min}\{NS(f)|f:V(G)\rightarrow W} is a bijection}. The lower neighbor sum parameters are NS-W[G]=maxNS-[f]|f:V(G)? W{NS^{-}_W[G]={\rm max}NS^{-}[f]|f:V(G)\rightarrow W} is a bijection} and NS-W(G)=maxNS-(f)|f:V(G)? W{NS^{-}_W(G)={\rm max}NS^{-}(f)|f:V(G)\rightarrow W} is a bijection}. For bijections f:V(G)? {1,2,?,n}{f:V(G)\rightarrow \{1,2,\ldots,n\}} we consider the parameters NS[G], NS(G), NS [G] and NS (G), as well as two parameters minimizing the maximum difference in neighborhood sums.  相似文献   

5.
Given a bounded open regular set W ì \mathbbR2{\Omega \subset \mathbb{R}^2} and x1, x2, ?, xm ? W{x_1, x_2, \ldots, x_m \in \Omega}, we give a sufficient condition for the problem
-div(a(u)?u) = r2 f(u) -{\rm div}(a(u)\nabla u)= \rho^{2} f(u)  相似文献   

6.
We study the sum of weighted Lebesgue spaces, by considering an abstract measure space (W,A,m){(\Omega ,\mathcal{A},\mu)} and investigating the main properties of both the Banach space
L( W) = {u1+u2:u1 ? Lq1 (W),u2 ? Lq2 ( W) }, Lqi ( W) :=Lqi ( W,dm),L\left( \Omega \right) =\left\{u_{1}+u_{2}:u_{1} \in L^{q_{1}} \left(\Omega \right),u_{2} \in L^{q_{2}} \left( \Omega \right) \right\}, L^{q_{i}} \left( \Omega \right) :=L^{q_{i}} \left( \Omega ,d\mu \right),  相似文献   

7.
Suppose G is a transitive permutation group on a finite set W\mit\Omega of n points and let p be a prime divisor of |G||G|. The smallest number of points moved by a non-identity p-element is called the minimal p-degree of G and is denoted mp (G). ¶ In the article the minimal p-degrees of various 2-transitive permutation groups are calculated. Using the classification of finite 2-transitive permutation groups these results yield the main theorem, that mp(G) 3 [(p-1)/(p+1)] ·|W|m_{p}(G) \geq {{p-1} \over {p+1}} \cdot |\mit\Omega | holds, if Alt(W) \nleqq G {\rm Alt}(\mit\Omega ) \nleqq G .¶Also all groups G (and prime divisors p of |G||G|) for which mp(G) £ [(p-1)/(p)] ·|W|m_{p}(G)\le {{p-1}\over{p}} \cdot |\mit\Omega | are identified.  相似文献   

8.
Let G be a simple graph with n vertices. For any v ? V(G){v \in V(G)} , let N(v)={u ? V(G): uv ? E(G)}{N(v)=\{u \in V(G): uv \in E(G)\}} , NC(G) = min{|N(u) èN(v)|: u, v ? V(G){NC(G)= \min \{|N(u) \cup N(v)|: u, v \in V(G)} and uv \not ? E(G)}{uv \not \in E(G)\}} , and NC2(G) = min{|N(u) èN(v)|: u, v ? V(G){NC_2(G)= \min\{|N(u) \cup N(v)|: u, v \in V(G)} and u and v has distance 2 in E(G)}. Let l ≥ 1 be an integer. A graph G on nl vertices is [l, n]-pan-connected if for any u, v ? V(G){u, v \in V(G)} , and any integer m with lmn, G has a (u, v)-path of length m. In 1998, Wei and Zhu (Graphs Combinatorics 14:263–274, 1998) proved that for a three-connected graph on n ≥ 7 vertices, if NC(G) ≥ n − δ(G) + 1, then G is [6, n]-pan-connected. They conjectured that such graphs should be [5, n]-pan-connected. In this paper, we prove that for a three-connected graph on n ≥ 7 vertices, if NC 2(G) ≥ n − δ(G) + 1, then G is [5, n]-pan-connected. Consequently, the conjecture of Wei and Zhu is proved as NC 2(G) ≥ NC(G). Furthermore, we show that the lower bound is best possible and characterize all 2-connected graphs with NC 2(G) ≥ n − δ(G) + 1 which are not [4, n]-pan-connected.  相似文献   

9.
Let Ω and Π be two finitely connected hyperbolic domains in the complex plane \Bbb C{\Bbb C} and let R(z, Ω) denote the hyperbolic radius of Ω at z and R(w, Π) the hyperbolic radius of Π at w. We consider functions f that are analytic in Ω and such that all values f(z) lie in the domain Π. This set of analytic functions is denoted by A(Ω, Π). We prove among other things that the quantities Cn(W,P) := supf ? A(W,P)supz ? W\frac|f(n)(z)| R(f(z),P)n! (R(z,W))nC_n(\Omega,\Pi)\,:=\,\sup_{f\in A(\Omega,\Pi)}\sup_{z\in \Omega}\frac{\vert f^{(n)}(z)\vert\,R(f(z),\Pi)}{n!\,(R(z,\Omega))^n} are finite for all n ? \Bbb N{n \in {\Bbb N}} if and only if ∂Ω and ∂Π do not contain isolated points.  相似文献   

10.
We prove variants of Korn’s inequality involving the deviatoric part of the symmetric gradient of fields u:\mathbbR2 é W? \mathbbR2 u:{\mathbb{R}^2} \supset \Omega \to {\mathbb{R}^2} belonging to Orlicz–Sobolev classes. These inequalities are derived with the help of gradient estimates for the Poisson equation in Orlicz spaces. We apply these Korn type inequalities to variational integrals of the form
òW h( | eD(u) | )dx \int\limits_\Omega {h\left( {\left| {{\varepsilon^D}(u)} \right|} \right)dx}  相似文献   

11.
Summary. The reconstruction index of all semiregular permutation groups is determined. We show that this index satisfies 3 £ r(G, W) £ 5 3 \leq \rho(G, \Omega) \leq 5 and we classify the groups in each case.  相似文献   

12.
In this paper we study the quenching problem for the non-local diffusion equation
ut(x,t) = òW J(x - y)u(y,t)dy + ò\mathbbRN\W J(x - y)dy - u(x,t) - lu - p(x,t) {u_t}(x,t) = \int\limits_\Omega {J(x - y)u(y,t)dy + \int\limits_{{\mathbb{R}^N}\backslash \Omega } {J(x - y)dy - u(x,t) - \lambda {u^{ - p}}(x,t)} }  相似文献   

13.
We prove that every symplectic Kähler manifold (M;W) (M;\Omega) with integral [W] [\Omega] decomposes into a disjoint union (M,W) = (E,w0) \coprod D (M,\Omega) = (E,\omega_0) \coprod \Delta , where (E,w0) (E,\omega_0) is a disc bundle endowed with a standard symplectic form w0 \omega_0 and D \Delta is an isotropic CW-complex. We perform explicit computations of this decomposition on several examples.¶As an application we establish the following symplectic intersection phenomenon: There exist symplectically irremovable intersections between contractible domains and Lagrangian submanifolds. For example, we prove that every symplectic embedding j:B2n(l) ? \Bbb CPn \varphi:B^{2n}(\lambda) \to {\Bbb C}P^n of a ball of radius l2 3 1/2 \lambda^2 \ge 1/2 must intersect the standard Lagrangian real projective space \Bbb RPn ì \Bbb CPn {\Bbb R}P^n \subset {\Bbb C}P^n .  相似文献   

14.
It is proved that if Ω ⊂ Rn {R^n}  is a bounded Lipschitz domain, then the inequality || u ||1 \leqslant c(n)\textdiam( W)òW | eD(u) | {\left\| u \right\|_1} \leqslant c(n){\text{diam}}\left( \Omega \right)\int\limits_\Omega {\left| {{\varepsilon^D}(u)} \right|} is valid for functions of bounded deformation vanishing on ∂Ω. Here eD(u) {\varepsilon^D}(u) denotes the deviatoric part of the symmetric gradient and òW | eD(u) | \int\limits_\Omega {\left| {{\varepsilon^D}(u)} \right|} stands for the total variation of the tensor-valued measure eD(u) {\varepsilon^D}(u) . Further results concern possible extensions of this Poincaré-type inequality. Bibliography: 27 titles.  相似文献   

15.
We study the first vanishing time for solutions of the Cauchy–Dirichlet problem for the 2m-order (m ≥ 1) semilinear parabolic equation ${u_t + Lu + a(x) |u|^{q-1}u=0,\,0 < q < 1}We study the first vanishing time for solutions of the Cauchy–Dirichlet problem for the 2m-order (m ≥ 1) semilinear parabolic equation ut + Lu + a(x) |u|q-1u=0, 0 < q < 1{u_t + Lu + a(x) |u|^{q-1}u=0,\,0 < q < 1} with a(x) ≥ 0 bounded in the bounded domain W ì \mathbb RN{\Omega \subset \mathbb R^N}. We prove that if N 1 2m{N \ne 2m} and ò01 s-1 (meas\nolimits {x ? W: |a(x)| £ s })q ds < ¥, q = min(\frac2mN,1){\int_0^1 s^{-1} (\mathop{\rm meas}\nolimits \{x \in \Omega : |a(x)| \leq s \})^\theta {\rm d}s < \infty,\ \theta=\min\left(\frac{2m}N,1\right)}, then the solution u vanishes in a finite time. When N = 2m, the same property holds if ${\int_0^1 s^{-1} \left( \mathop{\rm meas}\nolimits \{x \in \Omega : |a(x)| \leq s \} \right) \ln \left( \mathop{\rm meas}\nolimits \{x \in \Omega : |a(x)| \leq s \} \right) {\rm d}s > - \infty}${\int_0^1 s^{-1} \left( \mathop{\rm meas}\nolimits \{x \in \Omega : |a(x)| \leq s \} \right) \ln \left( \mathop{\rm meas}\nolimits \{x \in \Omega : |a(x)| \leq s \} \right) {\rm d}s > - \infty}.  相似文献   

16.
In this paper we study the existence of a solution in ${L^\infty_{\rm loc}(\Omega)}In this paper we study the existence of a solution in Lloc(W){L^\infty_{\rm loc}(\Omega)} to the Euler–Lagrange equation for the variational problem
inf[`(u)] + W1,¥0(W) òW (ID(?u) + g(u)) dx,                   (0.1)\inf_{\bar u + W^{1,\infty}_0(\Omega)} \int\limits_{\Omega} ({\bf I}_D(\nabla u) + g(u)) dx,\quad \quad \quad \quad \quad(0.1)  相似文献   

17.
An undirected graph G = (V, E) is called \mathbbZ3{\mathbb{Z}_3}-connected if for all b: V ? \mathbbZ3{b: V \rightarrow \mathbb{Z}_3} with ?v ? Vb(v)=0{\sum_{v \in V}b(v)=0}, an orientation D = (V, A) of G has a \mathbbZ3{\mathbb{Z}_3}-valued nowhere-zero flow f: A? \mathbbZ3-{0}{f: A\rightarrow \mathbb{Z}_3-\{0\}} such that ?e ? d+(v)f(e)-?e ? d-(v)f(e)=b(v){\sum_{e \in \delta^+(v)}f(e)-\sum_{e \in \delta^-(v)}f(e)=b(v)} for all v ? V{v \in V}. We show that all 4-edge-connected HHD-free graphs are \mathbbZ3{\mathbb{Z}_3}-connected. This extends the result due to Lai (Graphs Comb 16:165–176, 2000), which proves the \mathbbZ3{\mathbb{Z}_3}-connectivity for 4-edge-connected chordal graphs.  相似文献   

18.
In the present paper, we introduce and study Beurling and Roumieu quasianalytic (and nonquasianalytic) wave front sets, WF *, of classical distributions. In particular, we have the following inclusion $WF_{*}(u) \subset WF_{*}(Pu) \cup \Sigma, \quad u \in \mathcal {D}^{\prime}(\Omega),$ where Ω is an open subset of ${\mathbb {R}^n}In the present paper, we introduce and study Beurling and Roumieu quasianalytic (and nonquasianalytic) wave front sets, WF *, of classical distributions. In particular, we have the following inclusion
WF*(u) ì WF*(Pu) èS,     u ? D(W),WF_{*}(u) \subset WF_{*}(Pu) \cup \Sigma, \quad u \in \mathcal {D}^{\prime}(\Omega),  相似文献   

19.
Let W ì \Bbb Rn\Omega \subset {\Bbb R}^n be a smooth domain and let u ? C0(W).u \in C^0(\Omega ). A classical result of potential theory states that¶¶-òSr([`(x)]) u(x)ds(x)=u([`(x)])-\kern-5mm\int\limits _{S_{r}(\bar x)} u(x)d\sigma (x)=u(\bar x)¶¶for every [`(x)] ? W\bar x\in \Omega and r > 0r>0 if and only if¶¶Du=0 in W.\Delta u=0 \hbox { in } \Omega.¶¶Here -òSr([`(x)]) u(x)ds(x)-\kern-5mm\int\limits _{S_{r}(\bar x)} u(x)d\sigma (x) denotes the average of u on the sphere Sr([`(x)])S_r(\bar x) of center [`(x)]\bar x and radius r. Our main result, which is a "localized" version of the above result, states:¶¶Theorem. Let u ? W2,1(W)u\in W^{2,1}(\Omega ) and let x ? Wx\in \Omega be a Lebesgue point of Du\Delta u such that¶¶-òSr([`(x)]) u d s- a = o(r2)-\kern-5mm\int\limits _{S_{r}(\bar x)} u d \sigma - \alpha =o(r^2)¶¶for some a ? \Bbb R\alpha \in \Bbb R and all sufficiently small r > 0.r>0. Then¶¶Du(x)=0.\Delta u(x)=0.  相似文献   

20.
Let G be a permutation group on a finite set W\Omega . If G does not involve An for n \geqq 5 n \geqq 5 , then there exist two disjoint subsets of W\Omega such that no Sylow subgroup of G stabilizes both and four disjoint subsets of W\Omega whose stabilizers in G intersect trivially.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号