首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Contribution of Radiation Technology to Environmental Protection   总被引:2,自引:0,他引:2  
The direct and indirect contributions of radiation technology to environmental protection are summarized. The indirect contribution consists in a considerably decreased or, in some cases, completely abandoned use of harmful substances (such as volatile organic solvents) in radiation-chemical processes, utilization of spent materials and products (in particular, butyl rubber), etc. The direct contribution includes the direct use of ionizing radiation for the purification and disinfection of polluted natural and drinking water, municipal and industrial wastewater, other liquid wastes, gas systems (for example, flue gases from thermal power stations), sewage sludge, and solid wastes (infected medical wastes, polluted soil, etc.); pest control (by radiation sterilization of male insects); etc. The corresponding examples based on recent studies are cited.  相似文献   

2.
Soil substrates of sewage farms (inflow of sewage areas) and of closed sewage farms were investigated by means of thermogravimetry and differential thermal analysis. The results were compared with those obtained for control samples from outside the sewage farms.The organic matter of actively used sewage areas (inflow) contains a remarkable amount of easily oxidizable compounds brought to the inflows by suspended matter.Beside these compounds, macromolecular organic substances predominate in the composition of the organic matter and are responsible for an immense heat release in the high temperature range of the thermal studies.In the substrates of closed sewage farm inflows or of other sewage farm areas which do not belong to the inflows, the amounts of volatile and easily oxidizable compounds decrease rapidly. The substrates hardly differ in their reaction temperatures from control samples. The influence of single macromolecules on the exothermic oxidation is reduced with increasing humification.  相似文献   

3.
高分子结晶行为是高分子材料加工过程研究的热点,因为高分子组分和加工工艺控制着高分子结晶及其产物性能。差示扫描量热仪(DSC)是研究高分子结晶动力学常规手段。但是,普通DSC所能达到的最快降温速率一般无法抑制较快的样品结晶,结晶行为将在等温结晶动力学测试之前发生,因此可进行等温结晶的研究温度范围局限于较低结晶过冷度的高温区域。近年来,具有超快速升降温扫描速率和精准控温的快速扫描芯片量热仪(FSC,其商业化版本Flash DSC 1)得到了广泛应用。FSC可以抑制高分子样品在升降温过程中的结晶成核,避免对之后的结晶动力学测试产生影响。因此FSC技术将高分子结晶动力学的研究温度区间延伸至具有较大过冷度的低温区,加深了我们对高分子结晶成核机理以及高分子工业加工过程的理解。本文首先介绍了由初级成核方程描述的高分子结晶动力学原理,初级成核自由能位垒(?G~*)和扩散活化能位垒(?U)分别控制了高低温区的结晶动力学。我们还总结了FSC技术的发展,包括氮化硅薄膜芯片技术、快速扫描量热仪、商业化Flash DSC 1在不同高分子结晶熔融行为研究中的应用。然后介绍表征高分子等温结晶动力学的方法,其中包括样品制备、质量估算、消除热历史、临界扫描速率的确定等,并举例介绍FSC在高分子结晶动力学研究中的应用,涵盖高分子总结晶动力学、结晶成核动力学、高分子焓松弛对结晶成核的影响、FSC联用技术等方面。应用举例中对应形貌和结晶信息,分析了通过FSC测试得到的结晶成核动力学特点。另外通过比较不同结构特点的高分子,总结了我们对结晶动力学行为的基本理解。总之,FSC技术是一种能够提供相转变动力学和热力学信息的高效工具,特别是应用于分析只能在快速扫描中得到的样品结构变化信息。同时我们希望本文能够帮助读者考虑超快扫描量热技术在其他材料研究上的应用,包括合金、药物、生物大分子等。  相似文献   

4.
生命相关过程伴随着极其复杂的化学和物理过程,包含着物质变化和能量转换,其中部分能量不可避免地会以热的形式表现出来。用微量热技术和热动力学方法,研究复杂生命体系和相关反应的热动力学过程,可宏观地、本质地反映生命相关过程的内在规律。本文综述了生物量热学方法和技术在生命科学中的应用,介绍了生物量热技术在生态系统、生物组织和器官、细胞水平、亚细胞水平和分子层面等不同生物层次和结构水平上的研究现状和进展。  相似文献   

5.
The organic fraction of urban solid residues disposed of in sanitary landfills during the decomposition yields biogas and leachate, which are sources of pollution. Leachate is a resultant liquid from the decomposition of substances contained in solid residues and it contains in its composition organic and inorganic substances. Literature shows an increase in the use of thermoanalytical techniques to study the samples with environmental interest, this way thermogravimetry is used in this research. Thermogravimetric studies (TG curves) carried out on leachate and residues shows similarities in the thermal behavior, although presenting complex composition. Residue samples were collected from landfills, composting plants, sewage treatment stations, leachate, which after treatment, were submitted for thermal analysis. Kinetic parameters were determined using the Flynn–Wall–Ozawa method. In this case they show little divergence between the kinetic parameter that can be attributed to different decomposition reaction and presence of organic compounds in different phases of the decomposition with structures modified during degradation process and also due to experimental conditions of analysis.  相似文献   

6.
In the present work an attempt was made to obtain mineral-carbon sorbents by thermal decomposition of solid waste materials containing, besides to mineral components, solid petroleum derivatives. The amount and the homogeneity of distribution of coal product formed in decomposition of organic matter on the surface of the mineral matrix, as well as the porous structure of the sorbents obtained depend largely on the conditions of calcination of the wastes used. The aim of this work was to find optimum conditions of the process. The sorptive properties of the obtained material were checked in the process of reduction of pollutants contained in industrial wastes. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
The imposition of more stringent legislation by CETESB in the State of São Paulo (Brazil) governing the disposal and utilization of sewage sludge, coupled with the growth in its generation has prompted a drive for alternative uses of sewage sludge. One option that is especially promising, due to its potential to valorize sludge, is its conversion into carbonaceous adsorbents or coke for industrial effluents treatment. Thus, a methodology is presented to estimate the coke produced from the sludge of a sewage treatment station using thermal analysis. The used sewage sludge, which comes from aerobic treatment, was collected in the wastewater treatment station of Barueri, one of the largest of the São Paulo metropolitan area. The sludge samples were collected, dried, ground, and milled until they passed an ABNT 200 sieve. The inert ambient used during its thermal treatment produces inorganic matter and coke as residual materials. Coke formation occurs in the 200–500 °C range and, between 500 and 900 °C, its thermal decomposition occurs. The highest formation of coke occurs at 500 °C.  相似文献   

8.
The present study describes the aerobic biodegradation process of a mixture of sanitary sewage sludge and lubricating oil. TG/DTG curves confirmed that the applied aerobic biological treatment decreased the organic material content and caused significant modifications in the thermal behavior of the studied substrates after the functioning period.  相似文献   

9.
Thermogravimetric studies provide the basis for qualification of materials and suitability of biomass fuels and fuels formed from waste to convert them into fuel gas generated in the generator process. The paper presents the results of the analysis of thermal decomposition (thermogravimetric research) of fuel from waste, sewage sludge and wastes from the agro-food: potato pulp and rapeseed meal. Studies have shown how some biofuels and fuel formed from waste reach the semi-coke and coke structure, which is important later, in modeling industry degassing process. The most effective seems to be using rapeseed meal in generator process, since the thermal decomposition occurs in the form of transformation in the temperature range 200?C500?°C. On the basis of quantity analysis of gaseous transformation products from the above mentioned transformations, the calorific value of after process gases has been calculated. The highest calorific value is represented by a gas resulting from rapeseed meal pyrolysis ~10,040?kJ/Nm3. The solid residue obtained by dry decomposition of potato pulp has the highest energy value when compared with products from other fuels.  相似文献   

10.
Pyrolysis of sewage sludge in fluidized bed to produce bio-oil is under study as a useful way to valorise this waste. Sewage sludge is the waste produced in the wastewater treatment plants. Its composition may change due to the origin and to the non-standardized treatments in the wastewater treatment plants. The pyrolysis of three samples of anaerobically digested sewage sludge obtained from three different urban wastewater treatment plants was studied in this work. The organic and inorganic matter composition, and the volatile and ash content of these sewage sludge samples were different. The influence of these parameters on the pyrolysis product distribution and on some characteristics of these products was studied. It was determined that the ash content of the raw material had an enormous influence on the sewage sludge pyrolysis. An increase in the ash content of the sewage sludge caused an increase in the gas yield and a decrease in the liquid and the solid yield with the operational conditions studied. The increase of the volatile content of the sewage sludge samples caused an increase in the liquid yield. The H2 proportion was the most influenced non-condensable gas. It increased significantly with the ash content. The viscosity of the pyrolysis oils decreased when the ash content augmented. On the other hand, the water content depended on the organic composition of the sewage sludge samples. The chemical composition of the pyrolysis oils was also affected by the sewage sludge ash content above all the proportion of polyaromatic hydrocarbons and nitrogen-containing aromatic compounds. These compound groups increased with the augment of the sewage sludge ash content. The oxygen-containing aliphatic compounds and the steroids decreased with the ash content, although its proportion in the sewage sludge liquid was also influenced by the organic matter composition of the sewage sludge samples.  相似文献   

11.
Paper industry generates a considerable amount of wastes. Their composition mainly depends on the type of paper produced and the origin of cellulose fibres. Nowadays, in Spain, 40% of solid wastes generated by the paper and pulp industry are deposited directly in landfill, 25% are used in the agriculture, 13% in the ceramic industry and 7% in the concrete production. In the last years, thermal treatment methods like combustion, pyrolysis and gasification have been widely study as alternative techniques for the valorization of different organic waste materials. The main objective of the present work is to study the pyrolysis behaviour of different paper mill waste materials. For this reason, a wide characterization of eight paper mill waste materials from different origins was performed using SEM, FTIR, DRX and thermogravimetric techniques. Paper mill sludges from recycled paper, mainly wastes obtained from deinking process, showed high CaCO3 and clays contents. Compared with the elevated total organic matter content (TOM) of paper mill waste materials their low organic carbon content determined by Cr2O72− oxidation reveals the elevated chemical stability of organic matter, due to high content on cellulose fibres. Analysis of samples by SEM indicates that successive recycled processes of paper leads to paper mill waste materials with more degraded fibres. XRD analyses show as crystalline cellulose was present in reject and primary sludge from paper mills that produced paper from virgin wood. However, crystalline cellulose content significantly decreased in waste materials from recycled paper. Finally, thermogravimetric analysis indicates that presence or mineral matter and degradation of cellulose significantly influences their pyrolysis behaviour. In general, weight loss of paper mill waste materials started at lower temperatures than pure cellulose. In waste materials from recycled paper weight loss continues at temperatures highest than 500 °C due to kaolinite dehydration and carbonates decomposition.  相似文献   

12.
Hexogen can be used pressed only if its crystals are covered by some polymeric material [1], either natural or artificial. Montan waxes, as natural polymeric materials, were used for the phlegmatization. The melting process of seven types of waxes was analyzed by differential scanning calorimetry. The thermal decomposition processes of hexogens and phlegmatized hexogens were investigated by dynamic differential scanning calorimetry and dynamic thermogravimetric analyses. Kinetic parameters of the decomposition processes of hexogens were evaluated by using data obtained from differential scanning calorimetric curves. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
Investigation of the biodegradability of water soluble poly(vinyl alcohol) (PVA) based blown films was carried out under different lab-scale environmental conditions. In particular respirometric tests were utilized in order to evaluate the biodegradability of PVA films in composting, in modified Sturm test and in soil burial simulation tests. Several microbial inocula present in river water, mature compost, forest and farm soils as well as sewage sludge from municipal and paper mill wastewater treatments plants were utilized for the relevant tests. A mixed PVA-degrading microbial culture was obtained by a common enrichment procedure by using sewage sludge from paper mill as inoculum; this culture was tentatively utilized for the isolation of single PVA-degrading microorganisms. As a first result we can stress that significant biodegradation extent in fairly low incubation time can be obtained only in the presence of acclimated microbial populations such as those deriving from paper mill sewage sludge, in liquid cultures. Nevertheless separation of single degrading microbial species was impossible most likely due to the establishment of symbiotic or commensal interactions between the single components of the PVA-degrading mixed cultures. On the other hand, limited mineralization rates were recorded in solid cultures in the presence of soil or compost. Finally, a mechanism of degradation of polymer chains unlike random or unzipping was suggested in the presence of either PVA-degrading mixed culture and its filtrate by means of viscometric determinations of molecular weight within the time.  相似文献   

14.
Client-funded bench-scale investigations concerning the likelihood of successfully applying biological remediation to hazardous wastes must be cost-effective, and they usually need only determine if biodegradation is likely to occur on site. To assess the potential for stimulating biodegradation, biochemical oxygen demand (BOD) was used to continuously monitor bacterial respiration during growth on mixed organic wastes from contaminated water and soil. Continuously collected oxygen-consumption data provided information on the overall metabolic activity of the resident bacterial population and permitted direct observation of the cessation of microbial respiratory activity and, thus, the termination of aerobic degradation. The correlation of biological oxygen utilization with biodegradation was confirmed using independent analytical methods. Continuous, long-term BOD analysis was applied to bench-scale studies to assess the biodegradation of mixed organic wastes from contaminated sites and industrial waste effluents. This information was used to make an initial determination regarding the need to further explore bioremediation as a potential remedial-action technology using on-site, pilot-scale testing.  相似文献   

15.
An analytical method was elaborated for simultaneous extraction and determination of fluorinated anionic and non-ionic surfactants in sewage sludge. Surfactant compounds were determined by liquid chromatography-mass spectrometry (LC-MS) after Soxhlet extraction, hot steam extraction and pressurised liquid extraction (PLE) using spiked sludge samples. PLE in a multiple-step procedure consisting of sequential use of ethyl acetate-dimethylformamide and methanol-phosphoric acid resulted in the most efficient extraction procedure. Quantitative analyses of the fluorinated anionic perfluorooctanesulfonate (PFOS) and the partly fluorinated non-ionic alkylpolyglycol ether (FAEO) surfactants were performed by selected ion monitoring LC-MS. Electrospray ionisation or atmospheric pressure chemical ionisation in negative or positive mode was performed. Recoveries between 105 and 120% could be reached. No PFOS and non-ionic FAEO surfactants in concentrations higher than 6 or 10 mg kg(-1) dry matter were observed in real environmental samples. Therefore aerobic and anaerobic biodegradation was performed to investigate the fate of fluorinated surfactants reaching wastewaters. Biological wastewater treatment in laboratory scale under aerobic or anaerobic conditions led to an elimination by biodegradation.  相似文献   

16.
Electron beam was studied to enhance the biodegradability of sewage sludge. Changes in physicochemical characteristics of the sludge were examined with various irradiation doses, sludge thicknesses and exposure times. Irradiation thickness was suggested as the key factor affecting the efficiency of solublization of solid organic matter, whereas exposure time would be the most critical parameter in inducing cell lysis in sewage sludge. In addition, biogas production was improved as much as 22% when the sludge thickness was 0.5 cm with a dose of 7 kGy.  相似文献   

17.
应用TGA-FTIR研究不同来源污泥的燃烧和热解特性   总被引:9,自引:0,他引:9  
在空气气氛下,利用热重分析方法研究了三种不同来源的污泥燃烧特性。探讨水处理工艺和污泥处理工艺对污泥中有机物的分布影响和燃烧特性影响。研究发现,污水厌氧工艺和污泥厌氧工艺均导致结构复杂、燃烧温度高的有机物生成。在氮气气氛下利用热重红外联用技术,对比研究了同种污泥的热解和燃烧特性,污泥热解主要发生有机物裂解成小分子和小分子的挥发,氧气的存在加速了污泥的裂解。污泥热解温度200℃~500℃,主要气体H2O、CO2、CO以及甲烷等烃类,CO2在高温750℃还存在一个析出峰,由于无机碳酸盐的分解。  相似文献   

18.
Modern municipal sewage waste treatment plants use conventional mechanical and biological processes to reclaim wastewaters. This process has an overall effect of converting a water pollution problem into a solid waste disposal problem (sludges or biosolids). An estimated 10 million tons of biosolids, which require final disposal, are produced annually in the United States. Although numerous disposal options for biosolids are available, including land application, landfilling, and incineration, disposal costs have risen, partly because of increased federal and local environmental restrictions(1). A novel, thermomechanical biosolids pre-treatment process, which allows for a variety of potential value-added uses, was developed. This two-step process first employs thermal explosive decompression to inactivate or kill the microbial cells and viruses. This primary step also results in the rupture of a small amount of the microbial biomass and increases the intrinsic fluidity of the biosolids. The second step uses shear to effect a near-complete rupturing of the microbial biomass, and shears the nondigested organics, which increases the overall surface area. Pretreated biosolids may be subjected to a secondary anaerobic digestion process to produce additional fuel gas, and to provide for a high-quality, easily dewatered compost product. This novel biosolids pretreatment process was recently allowed a United States patent.  相似文献   

19.
Lauroyl peroxide (LPO) is a typical organic peroxide that has caused many thermal runaway reactions and explosions. Differential scanning calorimetry (DSC) was employed to determine the fundamental thermokinetic parameters that involved exothermic onset temperature (T0), heat of decomposition (ΔHd), and other safety parameters for loss prevention of runaway reactions and thermal explosions. Frequency factor (A) and activation energy (Ea) were calculated by Kissinger model, Ozawa equation, and thermal safety software (TSS) series via DSC experimental data. Liquid thermal explosion (LTE) by TSS was employed to simulate the thermal explosion development for various types of storage tank. In view of loss prevention, calorimetric application and model analysis to integrate thermal hazard development were necessary and useful for inherently safer design.  相似文献   

20.
The main objective of the present study is to study the behaviour of sewage sludge and biochar from sewage sludge pyrolysis after addition to soil in a context of a temperate agricultural soil. For this, an incubation experiment was designed during 200 days. Carbon mineralization of soil amended with sewage sludge and biochar at two different rates (4 and 8 wt%) was evaluated. Differential thermal analysis, thermogravimetry and the first derivate of the TG were performed in oxidizing conditions on soil samples before and after incubation. Biochar obtained from sewage sludge pyrolysis at 500 °C was more stable in soil than original sewage sludge. After incubation experiment, the reduction of soil organic matter content was significantly lower in soil amended with biochar than in soil amended with sewage sludge. The thermostability index WL3/WL2 decreases after incubation in soil amended with biochar, however it increases in case of soil treated with sewage sludge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号