首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The aim of this study was to prepare, using taste-masked granules, tablets which can rapidly disintegrate in saliva (rapidly disintegrating tablet), of drugs with bitter taste (pirenzepine HCl or oxybutynin HCl). The taste-masked granules were prepared using aminoalkyl methacrylate copolymers (Eudragit E-100) by the extrusion method. None of the drugs dissolved from the granules (% of dissolved, < 5%) even at 480 min at pH 6.8 in the dissolution test. However, the drugs dissolved rapidly in the medium at pH 1.2 in the dissolution test. Rapidly disintegrating tablets were prepared using the prepared taste-masked granules, and a mixture of excipients consisting of crystalline cellulose (Avicel PH-102) and low-substituted hydroxypropylcellulose (L-HPC, LH-11). The granules and excipients were mixed well (mixing ratio by weight, crystalline cellulose: L-HPC = 8:2) with 1% magnesium stearate, and subsequently compressed at 500-1500 kgf in a single-punch tableting machine. The prepared tablets (compressed at 500 kgf) containing the taste-masked granules have sufficient strength (the crushing strength: oxybutynin tablet, 3.5 kg; pirenzepine tablet, 2.2 kg), and a rapid disintegration time (within 20 s) was observed in the saliva of healthy volunteers. None of the volunteers felt any bitter taste after the disintegration of the tablet which contained the taste-masked granules. We confirmed that the rapidly disintegrating tablets can be prepared using these taste-masked granules and excipients which are commonly used in tablet preparation.  相似文献   

2.
Metformin/Gliclazide extended release tablets were formulated with Eudragit NE30D by wet granulation technique. Two batches were prepared in order to study influence of drug polymer ratio on the tablet formation and in vitro drug release. The formulated tablets were characterized by disintegration time, hardness, friability, thickness, weight variation, and in vitro drug release. The percentage of polymer, with respect to Metformin/Gliclazide, required to produce tablets with acceptable qualities was 9 to 13.45. The percentage of polymer below this range released the drug immediately and above this range produced granules not suitable for tablet formation. The quantity of Metformin/Gliclazide present in the tablets and the release medium were estimated by a validated HPLC method. The formulated tablets had acceptable physicochemical characters and released the drug over 6-8 h. The data obtained from in vitro release studies were fitted with various kinetic models and was found to follow Higuchi kinetics.  相似文献   

3.
The aim of this study was to evaluate the influence of Na-bicarbonate as an effervescent agent on the floating and sustained-release characteristics in 0.1 M HCl of tablets made of Eudragit E PO (EE) and/or Eudragit L-100-55 (EL) as matrix formers at different EE:EL weight ratios: 0:100, 25:75, 50:50, 75:25, and 100:0. The tablets were made by direct compression utilizing metronidazole as a model drug. Effervescent tablets with 50EE/50EL (w/w) showed the best floating and sustained drug release properties in the dissolution medium. The corresponding noneffervescent tablets were nonfloating and showed significantly faster drug release. Effervescent tablets with single polymers showed an immediate drug release pattern. These results were explained by Fourier-transform infrared spectroscopy and elemental analysis, which showed strong evidence of interpolyelectrolyte complexation between EE and EL when they were exposed to 0.1 M HCl as an effervescent hybrid matrix, but not as a noneffervescent hybrid matrix. The role of Na-bicarbonate in allowing EE-EL complexation during dissolution was explained as due to raising the pH around EL particles for sufficient polymer ionization and ionic-interaction with the ionized EE.  相似文献   

4.
Nilvadipine (NIL) solid dispersion using crospovidone (Cross-linked-N-vinyl-2-pyrolidone, cl-PVP) and methylcellulose (MC) as carriers was applied to tablet formulation. Several grades of cl-PVP and MC were used, and their influence on tablet properties such as hardness, disintegration, dissolution and chemical stability were investigated. The agitation granulation method was used for preparation of solid dispersion granules, and the granules were compressed using a rotary tableting machine, and finally the obtained tablets were coated with film. As the particle size of cl-PVP decreased, hardness and apparent solubility were increased, while dissolution rate was lowered. When a higher viscosity grade of MC was used, hardness and dissolution rate were increased, and apparent solubility did not change. All batches of tablets were chemically stable at 40 degrees C, 75% relative humidity (R.H.) for six months. Finally, tablets with enhanced dissolution properties were obtained by using Polyplasdone XL-10 and Metolose SM-25 as the grades of cl-PVP and MC, respectively. These formulation tablets showed higher solubility and dissolution rate during storage as well as initial indicating good physical stability.  相似文献   

5.
The formulation of Garcinia kola seeds into tablet dosage form and evaluation of some physical properties of the tablets are presented. A chemical assay was conducted on the dry, powdered seeds as well as the crude aqueous extract of the seeds. The dry powdered seeds contain 0.003% of flavonoids while the crude extract contained 0.007% of flavonoids based on rutin used as the standard. The powdered material (50 mg) and crude extract (10 mg) were formulated into tablets using the wet granulation method. Named binders were evaluated in these formulations. The various tablet parameters were evaluated, namely: weight variation, thickness and diameter, hardness, friability, disintegration time, dissolution profile and content uniformity. The results indicated that the tablets had good disintegration time, dissolution and hardness/friability profiles. Tablets formulated with starch had the best disintegration properties but were consequently very friable. Tablets formulated from 10 mg of the crude extract needed a larger proportion of diluents, which affected the tablet properties.  相似文献   

6.
The aims of the present research were to mask the intensely bitter taste of sumatriptan succinate and to formulate orally disintegrating tablets (ODTs) of the taste masked drug. Taste masking was performed by coating sumatriptan succinate with Eudragit EPO using spray drying technique. The resultant microspheres were evaluated for thermal analysis, yield, particle size, entrapment efficiency and in vitro taste masking. The tablets were formulated by mixing the taste masked microspheres with different types and concentrations of superdisintegrants and compressed using direct compression method followed by sublimation technique. The prepared tablets were evaluated for weight variation, thickness, hardness, friability, drug content, water content, in vitro disintegration time and in vitro drug release. All the tablet formulations disintegrated in vitro within 37-410 s. The optimized formulation containing 5% Kollidon CL-SF released more than 90% of the drug within 15 min and the release was comparable to that of commercial product (Suminat?). In human volunteers, the optimized formulation was found to have a pleasant taste and mouth feel and disintegrated in the oral cavity within 41 s. The optimized formulation was found to be stable and bioequivalent with Suminat?.  相似文献   

7.
A newly developed mini-scale high shear granulator was used for scale-up study of wet granulation process from 0.2 to 200 L scales. Under various operation conditions and granulation bowl sizes, powder mixture composed of anhydrous caffeine, D-mannitol, dibasic calcium phosphate, pregelatinized starch and corn starch was granulated by adding water. The granules were tabletted, and disintegration time and hardness of the tablets were evaluated to seek correlations of granulation conditions and tablet properties. As the granulation proceeded, disintegration time was prolonged and hardness decreased. When granulation processes were operated under the condition that agitator tip speed was the same, similar relationship between granulation time and tablet properties, such as disintegration time and hardness, between 0.2 L and 11 L scales were observed. Likewise, between 11 L and 200 L scales similar relationship was observed when operated under the condition that the force to the granulation mass was the same. From the above results, the mini-scale high shear granulator should be useful tool to predict operation conditions of large-scale granulation from its mini-scale operation conditions, where similar tablet properties should be obtained.  相似文献   

8.
The intermolecular reaction and its role in determining the partial compatibility between diethylsuccinate containing linear low-density polyethylene or ethylene propylene copolymer and poly-ϵ-caprolactam (PA6) has been investigated in the melt using a Brabender mixer. The reaction product has been submitted to selective solvent extraction with formic acid and n-heptane; the characterization of the two extracted fractions and the insoluble residue has demonstrated the formation of a polyolefin–nylon (PO–PA6) grafted copolymer. The formation of grafted copolymer has an evident effect on the compatibilization of the two original polymers, indeed the differential scanning calorimetry analysis shows a remarkable decrease of temperature and enthalpy of PA6 crystallization. Moreover scanning electron microscopy micrographs show clear evidence of size reduction of PA6 domains associated with improved interface interactions. © 1998 John Wiley & Sons, Ltd.  相似文献   

9.
The present investigation studied a novel extended release system of promethazine hydrochloride (PHC) with acrylic polymers Eudragit RLPO and Eudragit RS100 in different weight ratios (1 : 1 and 1 : 5) using coevaporation and coprecipitation techniques. Solid dispersions were characterized by Fourier-transformed infrared spectroscopy (FT-IR), Differential scanning calorimetry (DSC), Powder X-ray diffractometry (PXRD), Nuclear magnetic resonance (NMR), Scanning electron microscopy (SEM) as well as solubility and in vitro dissolution studies in 0.1 n HCl (pH 1.2), double distilled water and phosphate buffer (pH 7.4). Adsorption test from drug solution to solid polymers were also performed. Selected solid dispersion system was subjected to direct compression and compressed tablets were evaluated for in vitro dissolution studies. The progressive disappearance of drug peaks in thermotropic profiles of coevaporates were related to increasing amount of polymers while SEM studies suggested homogenous dispersion of drug in polymer. Eudragit RLPO had a greater adsorptive capacity than Eudragit RS100 and thus its coevaporates in 1 : 5 ratio exhibited higher dissolution rate with 91.90% drug release for 12 h. Among different formulations, tablets prepared by Eudragit RLPO coevaporates (1 : 5) displayed extended release of drug for 12 h with 90.87% release followed by zero order kinetics (r(2)=0.9808).  相似文献   

10.
In order to develop the polymer materials having temperature-sensitive and high biological safety, Eudragit RS-PO and polyethylene glycol 400 (PEG 400) blend polymers (EPG) were prepared. The EPGs that have the glass transition temperature (Tg) at around the body temperature were prepared by the addition of 5--13% PEG 400 to Eudragit RS. As glassy polymers are not in thermodynamic equilibrium below their Tg, the effects of isothermal aging on the T(g)s of Eudragit RS and EPG containing 10% PEG 400 (10% EPG) were also studied at various aging temperatures. The Tg values of Eudragit RS increased with the aging time and after 30 d of aging, they apparently reached constant values which markedly differed depending on the aging temperatures. On the other hand, the Tg values of 10% EPG were almost independent of the aging temperature and reached around 33 degrees C at 30 d after aging. The ability as thermo-sensitive polymer of EPG was evaluated by the dissolution test of the acetaminophen (AAP) matrix tablets prepared with EPG. The AAP release rate from the EPG matrix tablets slightly changed below the Tg of tablets, and then, it markedly increased above the Tg. Considering high biological safety of Eudragit RS and PEG 400, EPG might be available to develop the novel thermo-sensitive drug delivery systems.  相似文献   

11.
Despite recent advances in the formulation of orally disintegrating tablets (ODTs), the efforts to enhance the swallowing of the drug after disintegration have been limited. In this study, the feasibility of the combined use of cyclodextrins (CyDs) and a functional drug carrier, hydroxypropylmethylcellulose stearoxy ether (Sangelose®) was investigated to improve usability of ODTs. Glimepiride, a potent third generation hypoglycemic agent for type 2 diabetes was used as a model drug, because it is poorly water-soluble and elimination half life is fairly short. The direct compression method was employed for the preparation of glimepiride tablets, containing CyDs and Sangelose®, and various characteristics of the tablets were examined. In the cases of α-CyD and β-CyD, a short disintegration time with an appropriate hardness was obtained, complying with ODT criteria. On the other hand, γ-CyD, HP-β-CyD and HB-β-CyD increased in the hardness and disintegration time of the tablets. The rheological evaluation revealed that CyDs, except γ-CyD, significantly reduced the viscosity of the fluids after disintegration of the tablets, suggesting an ease of swallowing. This was ascribable to the complexation of the hydrophobic stearoyl moiety of Sangelose® with CyDs after dissolution, leading to the inhibition of the polymer–polymer interaction of Sangelose® and to the decrease in viscosity of the solution. The interaction of glimepiride with α- and β-CyDs was studied by the solubility method, demonstrating that glimepiride formed water-soluble complexes with these CyDs. Results obtained here suggested that α-CyD and β-CyD can be particularly useful for the Sangelose®-based ODT formulation, compared to γ-CyD, HP-β-CyD and HB-β-CyD, because of the short disintegration time of the tablets containing α-CyD and β-CyD, their shear-thinning effect on Sangelose® solutions and their solubility enhancing effect on the drug.  相似文献   

12.
Poly (methyl methacrylate) derivatives such as Eudragit are largely used for drug encapsulation and in controlled oral drug delivery. With special focusing on those applications, solubilization and precipitation conditions of two pH‐sensitive Eudragit polymers, namely, L100 and E100, were investigated via systematic studies. Effects of various physicochemical parameters such as pH, polymer concentration, salinity, buffer concentration, and incubation time on the solubilization and precipitation of these polymers were investigated. In addition, pH titration of both polymers was reported. Considering both macroscopic and quantitative aspects such as the final mean particle size, size distribution, morphology, and the zeta potential, it was established that the different precited parameters could not be dissociated and exert a synergic action on the solubilization and precipitation of both polymers. Titration curves revealed two equivalences that helped estimating carboxylic content of Eudragit L100 (6 mmol/g) and ammonium content of Eudragit E100 (4 mmol/g). In this study, the solubilization and the precipitation domains were for the first time clearly established by considering the above‐mentioned parameters. Moreover, it was found that Eudragit L100 and E100 cannot be considered as classic polyelectrolytes; in fact, solubilization and precipitation domains were not affected by ionic strength.  相似文献   

13.
Effects of inorganic salts on disintegration of hydroxypropylmethylcellulose (HPMC) matrix tablets have been studied. Adding disintegrants, such as Ac-di-sol, Primojel, Kolidon-CL, or low substituted hydroxypropylcellulose (L-HPC) to HPMC matrix tablets had no effect on disintegration property. Disintegration time was improved by adding NaHCO(3), KH(2)PO(4), K(2)SO(4), KCl, or NaCl to the HPMC tablets as tablet components. On the other hand, addition of Na(2)CO(3), or Na(2)SO(4) to the tablets showed no improvement of disintegration. The heat of dissolution of inorganic salts that improved disintegration of tablets was endothermic, while that of inorganic salts that did not improve disintegration of tablets was exothermic. These results suggested that the thermal environment and ionic strength inside the tablet might affect the disintegration of HPMC matrix tablets.  相似文献   

14.
The aim of this article was to determine the optimal ingredients for the rapidly disintegrating oral tablets prepared by the crystalline transition method (CT method). The effect of ingredients (diluent, active drug substance and amorphous sugar) on the characteristics of the tablets was investigated. The ingredients were compressed and the resultant tablets were stored under various conditions. The oral disintegration time of the tablet significantly depended on diluents, due to differences in the penetration of a small amount of water in the mouth and the viscous area formed inside the tablet. The oral disintegration time was 10-30 s for tablets with a tensile strength of approximately 1 MPa, when erythritol, mannitol or xylitol was used as the diluent. The increase in the tensile strength of tablets containing highly water-soluble active drug substances during storage was as large as that of tablets without active drug substances, while the increase in the tensile strength of tablets containing low water-soluble active drug substances was small. It was therefore found that highly water-soluble active drug substances were more suitable for the formulation prepared by the CT method than low water-soluble active drug substances. Irrespective of the type of amorphous sugar (amorphous sucrose, lactose or maltose) used, the porosity of tablets with 1 MPa of tensile strength was 30-40%, and their oral disintegration time was 10-20 s. The optimal ingredients for rapidly disintegrating oral tablets with reasonable tensile strength and disintegration time were therefore determined from these results.  相似文献   

15.
A tableting process analyzer (TabAll) was used to predict disintegration time in the mouth of rapidly disintegrating tablet. Analyzer profiles recorded upper punch displacement and die wall force encountered during tablet processing. Changes in the mixing ratio of spherical sugar granules and microcrystalline cellulose or lactose affected upper punch displacement and die wall force profiles. Analysis of the compaction process revealed a strong association between disintegration time in the mouth and stationary time, relaxation time of upper punch displacement, and relaxation time of die wall force; disintegration time in the mouth decreased as the three parameters increased. Thus, analysis of the compaction process is useful for predicting disintegration time in the mouth of rapidly disintegrating tablet, which can assist the formulation of new rapidly disintegrating tablets.  相似文献   

16.
Three processed lactose-cellulose blends of similar composition, particle size and true density were compared as direct compression excipients: one was prepared by dry granulation, one by extrusion-spheronization, and the commercial product Cellactose. Differences among their flow properties depended solely on their different sphericities. Unlike those of the other blends, Cellactose particles exhibited numerous macropores. The mean yield pressures of all three blends were similar to those of direct compression lactoses. Cellactose tablets prepared at a punch pressure that largely eliminated macropores (pores >1 microm) had better mechanical properties but much poorer disintegration than tablets of the other blends prepared at the same punch pressure. However, the tensile strength and disintegration time of Cellactose tablets both fell rapidly as macropore volume was increased by reducing punch pressure, while the enthalpy of wetting/dissolution rose. The strength and water-resistance of well-compacted Cellactose tablets is attributed to the spatial distribution of lactose and cellulose in Cellactose particles, rather than to beta-lactose content or extra-particular structural features.  相似文献   

17.
报道了新型的含对硝基偶氮苯基团的甲基丙烯酸酯单体与含介晶基团的甲基丙烯酸酯单体的合成及其自由基共聚合.利用1H NMR、IR、UV Vis、GPC、元素分析、DTA及POM等手段对偶氮单体和聚合物进行了结构表征.证明两种单体的共聚合产物为无规共聚物,而且各聚合物在加热过程中均显示出明显的向列相液晶织构.研究了偶氮单体及其与介晶单体的共聚物的氯仿溶液和聚合物薄膜在紫外光诱导下的光异构化及热回复异构化行为.结果表明,它们在紫外光诱导下均能发生光致变色现象,而且介质对其光化学行为起决定作用.  相似文献   

18.
In this study we present a new aqueous two-phase system where both polymers are thermoseparating. In this system it is possible to recycle both polymers by temperature induced phase separation, which is an improvement of the aqueous two-phase system previously reported where one of the polymers was thermoseparating and the other polymer was dextran or a starch derivative. The polymers used in this work are EO50PO50, a random copolymer of 50% ethylene oxide (EO) and 50% propylene oxide (PO), and a hydrophobically modified random copolymer of EO and PO with aliphatic C14H29-groups coupled to each end of the polymer (HM-EOPO). In water solution both polymers will phase separate above a critical temperature (cloud point for EO50PO50 50 degrees C, HM-EOPO, 14 degrees C) and this will for both polymers lead to formation of an upper water phase and a lower polymer enriched phase. When EO50PO50 and HM-EOPO are mixed in water, the solution will separate in two phases above a certain concentration i.e. an aqueous two-phase system is formed analogous to poly(ethylene glycol) (PEG)/dextran system. The partitioning of three proteins, bovine serum albumin, lysozyme and apolipoprotein A-1, has been studied in the EO50PO50/HM-EOPO system and how the partitioning is affected by salt additions. Protein partitioning is affected by salts in similar way as in traditional PEG/dextran system. Recombinant apolipoprotein A-1 has been purified from a cell free E. coli fermentation solution. Protein concentrations of 20 and 63 mg/ml were used, and the target protein could be concentrated in the HM-EOPO phase with purification factors of 6.6 and 7.3 giving the yields 66 and 45%, respectively. Recycling of both copolymers by thermoseparation was investigated. In protein free systems 73 and 97.5% of the EO50PO50 and HM-EOPO polymer could be recycled respectively. Both polymers were recycled after aqueous two-phase extraction of apolipoprotein A-1 from a cell free E. coli fermentation solution. Apolipoprotein A-1 was extracted to the HM-EOPO phase with contaminating proteins in the EO50PO50 phase. The yield (78%) and purification factor (5.5) of apolipoprotein A-1 was constant during three polymer recyclings. This new phase system based on two thermoseparating polymers is of great interest in large scale extractions where polymer recycling is of increasing importance.  相似文献   

19.
热塑性聚合物红外定性分析快速制样方法的研究   总被引:1,自引:0,他引:1  
研究了热塑性聚合物红外光谱定性分析制样方法。提出了一种高效、简单、准确的熔融拉膜的制样方法,适用于聚乙烯、聚丙烯、聚苯乙烯、丙烯腈-丁二烯-苯乙烯(ABS)、乙烯-醋酸乙烯酯(EVA)、聚碳酸酯、聚甲基丙烯酸甲酯、聚甲醛。  相似文献   

20.
An amphiphilic graft copolymer was prepared by transesterification of poly(2-ethylhexyl acrylate-co-methyl methacrylate) with poly(ethylene glycol) monomethyl ether (MPEG2000). The grafting reaction was performed in melt at 155°C. The purified graft copolymer was blended into poly(methyl methacrylate) in concentrations of 1.5-30 wt %, either by mixing in chloroform solution or by melt mixing by means of a twin-screw extruder or a Brabender blender. Films of the blends were prepared by solution casting onto glass plates or by hot pressing between polished Al plates. At concentrations up to 20% of the graft copolymer homogeneous blends were obtained. At higher concentrations the blends were heterogeneous, and side-chain crystallinity was detectable by DSC analysis. The surface properties of the films were studied by measurements of water contact angles. The surface accumulation of the graft copolymer was demonstrated as a large increase in the wetting angle hysteresis, and found to depend on the procedure for film preparation as well as the casting substrate. © 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号