首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
可聚合非离子型乳化剂稳定的聚丙烯酰胺反相胶乳   总被引:5,自引:0,他引:5  
近年来,新型可聚合乳化剂的研制及应用引起了人们的极大兴趣[1~4].目前报道的可聚合乳化剂都是水溶性的,用于正相乳液聚合中改善聚合物膜的性能及聚合物的加工性能[1],提高聚合物胶乳的稳定性以及制备功能化乳胶粒子等[5,6].本文合成了油溶性可聚合非离...  相似文献   

2.
Zinc borate (2ZnO·3B2O3·3.5H2O) has relatively high dehydration on-set temperature which property permits processing in a wide range of polymer system. But zinc borate particles are hardly dispersed in a polymer matrix so that they prevent their using in industry. To address this problem, we synthesized hydrophobic zinc borate (2ZnO·3B2O3·3.5H2O) nanoflakes by employing solid-liquid reaction of zinc oxide (ZnO) and boric acid (H3BO3) in the presence of oleic acid. This method does not bring pollution. By conducting morphological and microscopic analyses, we found that this compound displayed nanoflake morphology with particle size of around 100-200 nm, thickness less than 100 nm and there were uniform mesopores with the diameter about 10 nm within the particles. Furthermore, our products had an effect on flame retardant of polyethylene, especially when the zinc borate was modified by oleic acid.  相似文献   

3.
The polymerization of inverse microemulsions of 2-methacryloyl oxyethyl trimethyl ammonium chloride stabilized by a blend of nonionic emulsifiers (a sorbitan sesquioleate and a sorbitan monooleate) and initiated by UV light in the presence of Azobis(isobutyronitrile) (AIBN) was investigated. The effect of initiator concentration, light intensity, emulsifier concentration, and dispersed phase weight fraction on the polymerization rate (Rp), number of polymer particles (Np), and polymer molecular weight (Mw) was studied. The application of this process to tubular reactors is discussed. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 737–748, 1998  相似文献   

4.
Formation of water-in-diesel oil (w/o) nano-emulsion has been achieved by a low-energy emulsification method by stabilizing a new combination of nonionic sorbitan esters surfactants, that is PEG20-sorbitan monostearate and sorbitan monooleate in mixed proportions. Different combinations of the surfactants (T6?+?S8) have been tested and the best possible combination of mixed surfactants is found at a surfactants ratio of 35:65 (wt/wt) for T6:S8 at hydrophile–lipophile balance (HLB)?=?8.01, which resulted in smaller droplet size of 44.87?nm. A phase diagram study is performed to identify the zones of formation of transparent, translucent, and opaque emulsions (44?nm??27?m3?·?s?1. Comparison of Ostwald ripening rate with other sets of surfactants obtained by different authors showed the lowest rate among them, indicative of enhanced stability. A rheological study of the tested set of nano-emulsions depicts the Newtonian behavior (1.0371?≤?n?≤?1.0826) over a wider range of shear rates (10–1000?s?1) at different temperatures (25–40°C).  相似文献   

5.
The main problem in treating oil/water emulsion from car wash waste-water by ultrafiltration (UF) is fouling caused by oil adsorption on the membrane surface and internal pore walls. This study demonstrates that the addition of bentonite clay can reduce the adsorption layer on cellulose acetate UF membrane, resulting in a reduction of total membrane resistance (Rt). Experiments were conducted to identify and describe three possible mechanisms: (i) bulk oil emulsion concentration reduction; (ii) particle aggregation and (iii) detachment of the adsorbed gel layer by shear force. Adsorption of oil emulsion by bentonite can lead to a significant reduction of bulk oil emulsion concentration, one of the major causes of flux enhancement. Results show that contact of oil emulsion with bentonite forms larger particles resulting in flux increment. An optimum particle size of 37 μm, corresponds with a bentonite concentration of 300 mg/l and provided the highest flux. Beyond this limiting concentration, flux improvement gradually declined, possibly due to the formation of packed cake of particles on the membrane surface. The presence of bentonite in the oil emulsion promotes high shear stress which acts against the gel layer. This high shear stress, caused by bentonite particles and cross-flow velocity, reverses the adsorbed gel layer to the bulk of the liquid phase.  相似文献   

6.
Solid particle stabilized emulsions, using unique shape defined particles, are receiving increasing research interest due to ease of formulation and interesting physiochemical characteristics. There is, however, a need to systematically investigate the effect of anisotropic discoidal microparticles, realized with top-down fabrication approaches, in emulsion stabilization. Here, the effect of poly(d ,l -lactide-co-glycolide) (PLGA) discoidal polymeric nanoconstruct (DPN) size on the formation and stability of oil-in-water emulsions is studied. Particles with a diameter of 1, 2, and 5 μm are fabricated with a lithographic templating technique, and used to stabilize medium chain triglyceride (MCT) oil emulsions. Three phase contact angles decreased from 85° ± 7° to 68° ± 12° moving from 1 to 5 μm DPN stabilized emulsions, showing a particle “hydrophilicity” increase with size. Microscopy imaging showed that the mean droplet diameter and dispersity increased with particle size, and that DPNs were present at the oil–water interface. DPN based emulsions were stable for about 24 h or less in the case of 1 and 2 μm DPNs. Emulsion stability was shorter than 12 h in case of 5 μm DPNs. Finally, calculations of DPN detachment free energies ΔGdw and excess surface coverages Cexcess demonstrated that, despite the significantly high adhesion energy of the discoidal DPN, emulsion stability was mostly affected by gravitational forces for DPN sizes above 2 μm. The use of PLGA and MCT oil in this study is relevant for future use of Pickering emulsions in pharmaceutical and drug delivery applications.  相似文献   

7.
Aluminum doped zinc oxide (AZO) nanometric particles were synthesized by hydrothermal method. Aluminum nitrate hydrate, aluminum sec-butoxide and zinc nitrate hydrate were used as the starting materials, and n-propanol and 2-butanol were used as solvents. Ratio of Al2O3 in ZnO was kept at 10 wt%. Reaction was conducted in a Teflon autoclave at 175–225 °C for 5 h. Ratios of alcohol, H2O and HCl to zinc nitrate hydrate were altered and 6 different sets of parameters were investigated. Obtained products were subjected to powder-XRD, particle size measurement, TEM examination and AAS analysis. Single phase AZO particles were obtained at alcohol to zinc nitrate ratio of 35, acid to zinc nitrate ratio of 0.2, at 225 °C. Particle size was determined as 3.2 ± 0.4 nm from TEM examinations and as 1–2 nm from dynamic light scattering. Synthesized particles have amphiphilic character, thus they can be dispersed in both polar and non-polar media. It was seen from the UV-diffuse reflectance spectra that the AZO powder had low reflectance in the UV region and high reflectance in the visible region. The obtained powder has the potential to be utilized in the form of thin films for optical and electronic purposes.  相似文献   

8.
It is shown that it is possible to synthesize high molecular weight hydrophilic polyurethane particles by reacting either tolylene-2,4-diisocyanate or isophorone diisocyanate and oligoethylene glycol (M n ∼200 g mol−1) in non-aqueous inverse emulsions. This procedure offers the advantage that the formation of polyurea can be prevented in consequence of the absence of water in the emulsion. Apparent molecular weights of hydrophilic polyurethane as high as 19,000 g mol−1 (M n) were obtained.  相似文献   

9.
The conductivity and modulus formulation in lithium modified bismuth zinc borate glasses with compositions xLi2O–(50-x) Bi2O3–10ZnO–40B2O3 has been studied in the frequency range 0.1 Hz–1.5 × 105 Hz in the temperature range 573 K–693 K. The temperature and frequency dependent conductivity is found to obey Jonscher's universal power law for all the studied compositions, the dc conductivity (σdc), crossover frequency (ωH), and frequency exponent (s) have been estimated from the fitting of the experimental data of ac conductivity with Jonscher's universal power law. Enthalpy to dissociate the cation from its original site next to a charge compensating centre (Hf) and enthalpy of migration (Hm) have been estimated. It has been observed that number of charge carriers and ac conductivity in the lithium modified bismuth zinc borate glasses increases with increase in Li2O content. Further, the conduction mechanism in the glass sample with x = 0 may be due to overlapping large polaron tunneling, whereas, conduction mechanism in other studied glass samples more or less follows diffusion controlled relaxation model. The ac conductivity is scaled using σdc and ωH as the scaling parameter and is found that these are suitable scaling parameter for conductivity scaling. Non-Debye type relaxation is found prevalent in the studied glass system. Scaling of ac conductivity as well as electric modulus confirms the presence of different type of conduction mechanism in the glass samples with x = 0 and 5 from other studied samples. The activation energy of relaxation (ER) and dc conductivity (Edc) are almost equal, suggesting that polarons/ions have to overcome same barrier while relaxing and conducting.  相似文献   

10.
ABSTRACT

Food Grade Rutile TiO2 was dispersed in coconut oil with the help of hydrophobic emulsifiers such as sorbitan esters and lecithin. The dispersed mixture was melted and blended with hydrophilic emulsifiers such as ethoxylated sorbitan esters and the preheated (60°C) blend was further sprayed by atomizer into cold water (20°C). The oil in water emulsions contained encapsulated TiO2 in the internal phase. The technique is simple and allows preparation of stable emulsions with average droplets size of 1-10 microns.  相似文献   

11.
Zinc borate is a boron-containing chemical material that is used to increase the flame retardancy of polymeric materials, dyes, cables, fabrics, carpets, and the internal parts of automobiles and planes. Commercially used zinc borate, which has the formula of 2ZnO·3B 2 O 3 ·7H 2 O, has a particle size between 10 and 20 μm. However, recent studies have shown that nanosized flame retardants have more superior flame retardancy and less negative effects on mechanical properties than microsized flame retardants. Nanosized flame retardants disperse more homogeneously and even low quantities are sufficient to provide high flame resistance. In this study, nano zinc borate powder was synthesized by a wet chemical method and the effects of nonionic, anionic, and cationic surfactants on the particle size and morphology of the zinc borate particles were investigated. Chemical purity and physical structures of the synthesized zinc borate powder were analyzed by XRD, FTIR, TG-DTA, TEM, and Zetasizer. The analysis results showed that the zinc borate powder had a chemical formula of 2ZnO·3B 2 O 3 ·7H 2 O. TEM and Zetasizer results indicated that the nano zinc borate powder, which had nanoscale particle size distribution with needle- and flake-like structures, was synthesized using nonionic, anionic, and cationic surfactants.  相似文献   

12.
We have measured the small angle neutron scattering (SANS) from slurries of powder in contact with surfactant solutions and emulsions to determine the fluid/solid interfacial structure. The slurry solids consisted either of graphite or pyrites particles; and the fluids were hexadecane containing the robust commercial polyisobutylenesuccinamide (PIBSA) surfactant, or a high internal phase emulsion of aqueous ammonium nitrate in hexadecane stabilised by PIBSA. To resolve the interfacial structure for both systems, combinations of deuterated and protonated materials were used.At low concentration in hexadecane, PIBSA forms a complete monolayer on graphite with a footprint per molecule of 103 Å2 and a layer thickness of 19 Å. At higher concentrations, the complete monolayer of footprint is 61 Å2 and 30 Å thick indicating compression of the PIBSA chain coil structure. Geometric exclusion effects caused by the stacking of the graphite particles also results in an excess of oil for ca. 160 Å above the surfactant monolayer.For pyrites in contact with surfactant in hexadecane, the oxidised surface layer, while smooth at the oil interface, is diffuse and/or rough at the interface with the bulk sulphide below. There is again a complete monolayer of surfactant adsorbed at the oxide surface, in a relatively compressed state with a footprint of 70 Å2, more tightly bound than on graphite. The excess of oil phase above the adsorbed surfactant monolayer is observed for samples with larger pyrites particle sizes but not for a sample with smaller particles. This suggests that the oil excess does arise from purely geometric solid particle packing, but that the local particle surface curvatures are significantly higher than the overall particle size would suggest.The scattering from the pyrites/emulsion interface was modelled by a 30 Å thick monolayer of surfactant coating an oxide surface with a molecular footprint of 123 Å2. For the larger particle size samples, there is a 30 Å thick layer of oil above the pyrites particle surface before a bulk emulsion/pyrites mixture is reached.These results extend previous reflectometry experiments on the silicon/emulsion interface, indicating that for stable emulsions the structures are qualitatively similar for three dissimilar solid surfaces. They show that useful results on surfactant structure and emulsion layering at the solid/emulsion and other solid/fluid interfaces can be simply obtained by SANS on powder samples variously contrasted by deuteration. SANS can be applied to a much greater range of solid interfaces than reflectometry since large neutron-transparent single crystals are not required, although the variety of faces in a powdered material degrades the quality of the information.  相似文献   

13.
Food Grade Rutile TiO2 was dispersed in coconut oil with the help of hydrophobic emulsifiers such as sorbitan esters and lecithin. The dispersed mixture was melted and blended with hydrophilic emulsifiers such as ethoxylated sorbitan esters and the preheated (60°C) blend was further sprayed by atomizer into cold water (20°C). The oil-in-water emulsions contained encapsulated TiO2 in the internal phase. The technique is simple and allows preparation of stable emulsions with average droplet size of 1-10 microns.  相似文献   

14.
New centrosymmetric trinuclear zinc(II) complex {[Zn(μ-ONN)(μ2-O)(μ-OO)]2Zn} has been synthesized by the reaction of a potentially ONN tridentate Schiff base ligand, and N,N-dimethylethylendiamin, with Zn(OAc)2·2H2O in methanol, in the refluxed conditions and characterized by elemental analysis, FT-IR and UV–Vis spectroscopy. Single crystal X-ray structure analysis reveals a trinuclear complex {[Zn(μ-ONN)(μ2-O)(μ-OO)]2Zn} with zinc(II) ions connected by three different bridges, (μ-ONN) of the Schiff base ligand, μ2-O and μ-OO of the acetate. The complex is centrosymmetric, with one of the Zn atoms located at the inversion center. While the central Zn(II) ion is six-coordinated, the coordination number of the other Zn(II) ions is five. Finally, the {[Zn(μ-ONN)(μ2-O)(μ-OO)]2Zn} complex was thermally decomposed in air at 700 °C resulted in ZnO nano crystalites with the average size of 42 nm. The antibacterial activity of ligand and its zinc(II) complex were tested against gram-positive and gram-negative bacteria. The ligand showed higher activity than its zinc(II) complex.  相似文献   

15.
The polycrystalline and hydrophobic zinc borate (Zn2B6O11·3H2O) nanoplatelets were in situ successfully synthesized via one-step precipitation reaction in aqueous solution of Na2B4O7·10H2O and ZnSO4·7H2O with oleic acid as the modifying agent. The microstructures and morphology of the as-obtained samples were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) equipped with an energy-dispersive X-ray spectrometer (EDS), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA). Measurements of the relative water contact angle and the active ratio indicated that Zn2B6O11·3H2O samples were hydrophobic. It had been found that the as-prepared materials displayed nanoplatelet morphology with average diameters 100–500 nm and thickness 30 ± 5 nm and the morphology and size of the samples were controlled effectively.  相似文献   

16.
To prepare functionalized magnetic polymer particles that are thermally responsive, inverse emulsion copolymerization of N-isopropylacrylamide, N,N′-methylenebisacrylamide and glycidyl acrylate (GA) was investigated in paraffin oil in the presence of γ-Fe2O3 nanoparticles dispersed in a water/glycerol mixture. The resulting polymer particles were characterized regarding the morphology, size, polydispersity, iron content, and the temperature-dependent phase transition using optical microscopy, transmission electron microscopy, scanning electron microscopy, atomic absorption spectroscopy, and differential scanning calorimetry. Magnetic properties were examined using hysteresis loop measurements and by analyzing the magnetic susceptibility with respect to temperature. We have also investigated the influence of the concentration of γ-Fe2O3 and GA in monomers on properties of the particles (morphology, size, and presence of oxirane groups). The particles possessed a hollow structure as a result of phase separation between water/glycerol hydrophilic solvents in the polymerization feed and the forming polymer. Depending on the concentration of γ-Fe2O3 in the monomer phase, the magnetic hollow particles contained 5–24 wt% iron. In water, the particles gradually collapsed when the temperature was raised to 40 °C because the elevated temperature weakened hydration and the PNIPAAm chains gradually became more hydrophobic.  相似文献   

17.
An industrial petroleum emulsion stabilized by colloidal silica particles was treated with four different twin-tailed surfactants: sodium bis-2-(ethylhexyl) sulfosuccinate (AOT), didodecylammonium bromide (DDAB), calcium oleate (Ca(OL)2), and dioctadecyldimethylammonium bromide (DODAB). Fourier transform infrared (FT-IR) spectroscopy, optical microscopy, centrifuge test, and conductivity measurement were employed to determine the effect of the amphiphile molecules on the crude oil emulsion. AOT and DDAB produce emulsion breakdown, while Ca(OL)2 does not alter the emulsion stability and DODAB produces an extra stabilization of it. The AOT adsorption at the oil–water droplet interface is a spontaneous process (ΔHads < 0), which promoted the emulsion breakdown through an inter-droplet interaction mechanism. DDAB needs extra energy (via centrifugation) to destabilize the emulsion. Ca(OL)2 dissolves in oil phase and remains there without altering the emulsion strength, while DODAB increases the emulsion stability.  相似文献   

18.
A water-in-oil (w/o) emulsion containing Kelex-100 (7-dodecenyl-8-quinolinol) and Span-80 (sorbitan monooleate, non-ionic surfactant) was ultrasonically prepared from 1.0 mol l−1 hydrochloric acid and a (1 + 3) mixture of toluene and n-heptane. The resulting emulsion was gradually injected into water sample and dispersed as numerous tiny globules (0.01-0.1 mm in diameter). Dissolved inorganic species (free metal species) of heavy metals (e.g., Fe, Co, Cu, Cd, and Pb) were selectively transported through the oil layer into the internal aqueous phase of the emulsion, leaving other species, such as humic complexes and suspended particles (larger than 1 μm), in the sample solution. After collecting the dispersed emulsion globules, they were demulsified and the heavy metals in the segregated aqueous phase were determined by graphite-furnace atomic absorption spectrometry. The emulsion-based separation method allowed the selective collection of free metal species with a high concentration factor of 100, whereas the conventional solvent extraction did not offer such discrimination. This unique property of the emulsion method was successfully applied to the selective determination of free species of heavy metals in fresh water samples.  相似文献   

19.
Emulsion liquid membranes (ELMs) containing 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester (PC-88A) have been applied to recover cobalt II ions from a dilute sulphate solution containing equal amounts of nickel II ions (0.16 g/l). We focused on the study to develop an effective technique to recover cobalt as a target metal. It is found that polyamine (PX 100) membranes allow better permeation rates of cobalt ions than sorbitan monooleate (Span 80) membranes. The separation factor (βCo/Ni) in polyamine membranes averaged 70 at a carrier concentration of 12 mol/m3 and feed solution pH 5.5. The permeation rate of Co II was found to increase proportionately with feed pH while for Ni II it decreased substantially at pH above 5.5 indicative of slower interfacial reaction rate. We found that short contact time (4–6 min) of feed solution and emulsion improved separation factor (βCo/Ni) at feed pH above 5.5 and also minimized chances of emulsion break up. We have also observed that Span 80 membranes are hydrolyzed readily in a moderate acidic sulphate solution (pH 4.0–5.5) to form viscous gels. Results have shown that excess carrier [(HR)2] affects the stability of emulsion and thus the separation factor. The critical ratio of carrier to emulsifier [(HR)2]/[Csf] was found to be approximately 0.5. This paper concludes with a discussion on the prospects of ELM system in practical use.  相似文献   

20.
A reaction of aqueous zinc acetate with 1,10-phenanthroline produces the ionic complex [(Phen)2Zn(OOCMe)](OOCMe) · 5H2O. A similar reaction of “anhydrous zinc acetate” [Zn74-O)2(μ-OOCMe)10][η-OC(Me)OHNEt3]2 in benzene yields a precipitate, which is recrystallized from acetonitrile into trinuclear (Phen)2Zn3(μ-OOCMe)6; and the reaction in acetonitrile yields mononuclear (Phen)Zn(OOCMe)2 · MeCN. These complexes have been characterized by single-crystal X-ray diffraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号